Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/22105
標題: Corynebacterium glutamicum NCHU 87078及其噬菌體P1201之thymidylate synthase, intein及lytic enzyme的生化特性
Biochemical Characterization of Thymidylate Synthases (ThyX) from Corynebacterium glutamicum NCHU 87078, and Inteins and Lytic Enzyme from Corynephage P1201
作者: 甘淑貞
Kan, Shu-Chen
關鍵字: 噬菌體;Corynebacterium glutamicum;corynephage;thymidylate synthase;intein;lytic enzyme
出版社: 分子生物學研究所
引用: Corynebacterium glutamicum NCHU 87078之thymidylate synthase 的生化特性 1. Agrawal, N., S. A. Lesley, P. Kuhn, and A. Kohen. 2004. Mechanistic studies of a flavin-dependent thymidylate synthase. Biochemistry 43:10295-12301. 2. Alberts, B., A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Wlater. 2002. Molecular Biology of the Cell, fourth ed. Garland Science, New York. 3. Bahar, I., A. R. Atilgan, and B. Erman. 1997. Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential. Fold Des. 2:173-181. 4. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254. 5. Carreras, C. W., and D. V. Santi. 1995. The catalytic mechanism and structure of thymidylate synthase. Annu. Rev. Biochem. 64:721-762. 6. Chiu, W. C., J. Y. You, J. S. Liu, S. K. Hsu, W. H. Hsu, C. H. Shih, J. K. Hwang, and W. C. Wang. 2006. Structure-stability-activity relationship in covalently cross-linked N-carbamoyl D-amino acid amidohydrolase and N-acylamino acid racemase. J. Mol. Biol. 359:741-753. 7. Costi, M. P., S. Ferrari, A. Venturelli, S. Calo, D. Tondi, and D. Barlocco. 2005. Thymidylate synthase structure, function and implication in drug discovery. Curr Med Chem 12:2241-2258. 8. Dev, I. K., B. B. Yates, J. Leong, and W. S. Dallas. 1988. Functional role of cysteine-146 in Escherichia coli thymidylate synthase. Proc. Natl. Acad. Sci. USA 85:1472-1476. 9. Doolittle, W. F., Y. Boucher, C. L. Nesbo, C. J. Douady, J. O. Andersson, and A. J. Roger. 2003. How big is the iceberg of which organellar genes in nuclear genomes are but the tip? Philos Trans R Soc Lond B Biol Sci 358:39-57; discussion 57-58. 10. Escartin, F., S. Skouloubris, U. Liebl, and H. Myllykallio. 2008. Flavin-dependent thymidylate synthase X limits chromosomal DNA replication. Proc. Natl. Acad. Sci. USA 105:9948-9952. 11. Finer-Moore, J. S., G. F. Maley, F. Maley, W. R. Montfort, and R. M. Stroud. 1994. Crystal structure of thymidylate synthase from T4 phage: component of a deoxynucleoside triphosphate-synthesizing complex. Biochemistry 33:15459-15468. 12. Fox, K. M., F. Maley, A. Garibian, L. M. Changchien, and P. Van Roey. 1999. Crystal structure of thymidylate synthase A from Bacillus subtilis. Protein Sci. 8:538-544. 13. Gattis, S. G., and B. A. Palfey. 2005. Direct observation of the participation of flavin in product formation by thyX-encoded thymidylate synthase. J. Am. Chem. Soc. 127:832-833. 14. Giladi, M., G. Bitan-Banin, M. Mevarech, and R. Ortenberg. 2002. Genetic evidence for a novel thymidylate synthase in the halophilic archaeon Halobacterium salinarum and in Campylobacter jejuni. FEMS Microbiol. Lett. 216:105-109. 15. Graziani, S., J. Bernauer, S. Skouloubris, M. Graille, C. Z. Zhou, C. Marchand, P. Decottignies, H. van Tilbeurgh, H. Myllykallio, and U. Liebl. 2006. Catalytic mechanism and structure of viral flavin-dependent thymidylate synthase ThyX. J. Biol. Chem. 281:24048-24057. 16. Graziani, S., Y. Xia, J. R. Gurnon, J. L. Van Etten, D. Leduc, S. Skouloubris, H. Myllykallio, and U. Liebl. 2004. Functional analysis of FAD-dependent thymidylate synthase ThyX from Paramecium bursaria chlorella virus-1. J. Biol. Chem. 279:54340-54347. 17. Griffin, J., C. Roshick, E. Iliffe-Lee, and G. McClarty. 2005. Catalytic mechanism of Chlamydia trachomatis flavin-dependent thymidylate synthase. J. Biol. Chem. 280:5456-5467. 18. Hardy, L. W., J. S. Finer-Moore, W. R. Montfort, M. O. Jones, D. V. Santi, and R. M. Stroud. 1987. Atomic structure of thymidylate synthase: target for rational drug design. Science 235:448-455. 19. Hermann, T., W. Pfefferle, C. Baumann, E. Busker, S. Schaffer, M. Bott, H. Sahm, N. Dusch, J. Kalinowski, A. Puhler, A. K. Bendt, R. Kramer, and A. Burkovski. 2001. Proteome analysis of Corynebacterium glutamicum. Electrophoresis 22:1712-1723. 20. Ho, S. N., H. D. Hunt, R. M. Horton, J. K. Pullen, and L. R. Pease. 1989. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77:51-59. 21. Hunter, J. H., R. Gujjar, C. K. Pang, and P. K. Rathod. 2008. Kinetics and ligand-binding preferences of Mycobacterium tuberculosis thymidylate synthases, ThyA and ThyX. PLoS ONE 3:e2237. 22. Jones, M. E. 1980. Pyrimidine nucleotide biosynthesis in animals: genes, enzymes, and regulation of UMP biosynthesis. Annu. Rev. Biochem. 49:253-279. 23. Kalinowski, J., B. Bathe, D. Bartels, N. Bischoff, M. Bott, A. Burkovski, N. Dusch, L. Eggeling, B. J. Eikmanns, L. Gaigalat, A. Goesmann, M. Hartmann, K. Huthmacher, R. Kramer, B. Linke, A. C. McHardy, F. Meyer, B. Mockel, W. Pfefferle, A. Puhler, D. A. Rey, C. Ruckert, O. Rupp, H. Sahm, V. F. Wendisch, I. Wiegrabe, and A. Tauch. 2003. The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. J. Biotechnol. 104:5-25. 24. Knighton, D. R., C. C. Kan, E. Howland, C. A. Janson, Z. Hostomska, K. M. Welsh, and D. A. Matthews. 1994. Structure of and kinetic channelling in bifunctional dihydrofolate reductase-thymidylate synthase. Nat. Struct. Biol. 1:186-194. 25. Koehn, E. M., T. Fleischmann, J. A. Conrad, B. A. Palfey, S. A. Lesley, Mathews, II, and A. Kohen. 2009. An unusual mechanism of thymidylate biosynthesis in organisms containing the thyX gene. Nature 458:919-923. 26. Koonin, E. V. 2003. Comparative genomics, minimal gene-sets and the last universal common ancestor. Nat. Rev. Microbiol. 1:127-136. 27. Kuhn, P., S. A. Lesley, Mathews, II, J. M. Canaves, L. S. Brinen, X. Dai, A. M. Deacon, M. A. Elsliger, S. Eshaghi, R. Floyd, A. Godzik, C. Grittini, S. K. Grzechnik, C. Guda, K. O. Hodgson, L. Jaroszewski, C. Karlak, H. E. Klock, E. Koesema, J. M. Kovarik, A. T. Kreusch, D. McMullan, T. M. McPhillips, M. A. Miller, M. Miller, A. Morse, K. Moy, J. Ouyang, A. Robb, K. Rodrigues, T. L. Selby, G. Spraggon, R. C. Stevens, S. S. Taylor, H. van den Bedem, J. Velasquez, J. Vincent, X. Wang, B. West, G. Wolf, J. Wooley, and I. A. Wilson. 2002. Crystal structure of thy1, a thymidylate synthase complementing protein from Thermotoga maritima at 2.25 Å resolution. Proteins 49:142-145. 28. Kurland, C. G., L. J. Collins, and D. Penny. 2006. Genomics and the irreducible nature of eukaryote cells. Science 312:1011-1014. 29. Leduc, D., F. Escartin, H. F. Nijhout, M. C. Reed, U. Liebl, S. Skouloubris, and H. Myllykallio. 2007. Flavin-dependent thymidylate synthase ThyX activity: implications for the folate cycle in bacteria. J. Bacteriol. 189:8537-8545. 30. Leduc, D., S. Graziani, G. Lipowski, C. Marchand, P. Le Marechal, U. Liebl, and H. Myllykallio. 2004. Functional evidence for active site location of tetrameric thymidylate synthase X at the interphase of three monomers. Proc. Natl. Acad. Sci. USA 101:7252-7257. 31. Leduc, D., S. Graziani, L. Meslet-Cladiere, A. Sodolescu, U. Liebl, and H. Myllykallio. 2004. Two distinct pathways for thymidylate (dTMP) synthesis in (hyper) thermophilic bacteria and archaea. Biochem. Soc. Trans. 32:231-235. 32. Leuchtenberger, W. 1996. Amino acids: technical production and use, p. 455-502. In H. J. Rehm and G. Reed (ed.), In Biotechnology. VCH Publishers, Winheim, Germany. 33. Liu, X. Q., and J. Yang. 2004. Bacterial thymidylate synthase with intein, group II intron, and distinctive ThyX motifs. J. Bacteriol. 186:6316-6319. 34. Mathews, II, A. M. Deacon, J. M. Canaves, D. McMullan, S. A. Lesley, S. Agarwalla, and P. Kuhn. 2003. Functional analysis of substrate and cofactor complex structures of a thymidylate synthase-complementing protein. Structure 11:677-690. 35. Matthews, D. A., K. Appelt, S. J. Oatley, and N. H. Xuong. 1990. Crystal structure of Escherichia coli thymidylate synthase containing bound 5-fluoro-2''-deoxyuridylate and 10-propargyl-5,8-dideazafolate. J. Mol. Biol. 214:923-936. 36. Myllykallio, H., G. Lipowski, D. Leduc, J. Filee, P. Forterre, and U. Liebl. 2002. An alternative flavin-dependent mechanism for thymidylate synthesis. Science 297:105-107. 37. Neuhard, J., and R. A. Kelln. 1996. Escherichia and Salmonella:cellular and microbiology, p. 580-599. In F. C. Neidhardt (ed.). American Society for Microbiology Publishers, Washington, DC. 38. Penny, D., and A. Poole. 1999. The nature of the last universal common ancestor. Curr. Opin. Genet. Dev. 9:672-677. 39. Sahm, H., and L. Eggeling. 1999. D-Pantothenate synthesis in Corynebacterium glutamicum and use of panBC and genes encoding L-valine synthesis for D-pantothenate overproduction. Appl. Environ. Microbiol. 65:1973-1979. 40. Sambrook, J., and D. W. Russel. 2001. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Publishers, New York. 41. Sampathkumar, P., S. Turley, C. H. Sibley, and W. G. Hol. 2006. NADP+ expels both the co-factor and a substrate analog from the Mycobacterium tuberculosis ThyX active site: opportunities for anti-bacterial drug design. J. Mol. Biol. 360:1-6. 42. Sampathkumar, P., S. Turley, J. E. Ulmer, H. G. Rhie, C. H. Sibley, and W. G. Hol. 2005. Structure of the Mycobacterium tuberculosis flavin dependent thymidylate synthase (MtbThyX) at 2.0 Å resolution. J. Mol. Biol. 352:1091-1104. 43. Santi, D. V., and C. S. McHenry. 1972. 5-Fluoro-2''-deoxyuridylate: covalent complex with thymidylate synthetase. Proc. Natl. Acad. Sci. USA 69:1855-1857. 44. Schiffer, C. A., I. J. Clifton, V. J. Davisson, D. V. Santi, and R. M. Stroud. 1995. Crystal structure of human thymidylate synthase: a structural mechanism for guiding substrates into the active site. Biochemistry 34:16279-16287. 45. Stern, A., I. Mayrose, O. Penn, S. Shaul, U. Gophna, and T. Pupko. An evolutionary analysis of lateral gene transfer in thymidylate synthase enzymes. Syst. Biol. 59:212-225. 46. Wahba, A. J., and M. Friedkin. 1961. Direct spectrophotometric evidence for the oxidation of tetrahydrofolate during the enzymatic synthesis of thymidylate. J. Biol. Chem. 236:PC11-12. 47. Woese, C. R. 2002. On the evolution of cells. Proc. Natl. Acad. Sci. USA 99:8742-8747. 48. Yukawa, H., C. A. Omumasaba, H. Nonaka, P. Kos, N. Okai, N. Suzuki, M. Suda, Y. Tsuge, J. Watanabe, Y. Ikeda, A. A. Vertes, and M. Inui. 2007. Comparative analysis of the Corynebacterium glutamicum group and complete genome sequence of strain R. Microbiology 153:1042-1058. 49. Zhong, J., S. Skouloubris, Q. Dai, H. Myllykallio, and A. G. Barbour. 2006. Function and evolution of plasmid-borne genes for pyrimidine biosynthesis in Borrelia spp. J. Bacteriol. 188:909-918. Corynebacterium glutamicum噬菌體P1201的intein 及lytic enzyme之生化特性 1. 陳昶霖。(2004) 噬菌體P1201基因組之解碼與分析。碩士論文,分子生物學研究所,中興,台中。 2. Baker, J. R., C. Liu, S. Dong, and D. G. Pritchard. 2006. Endopeptidase and glycosidase activities of the bacteriophage B30 lysin. Appl. Environ. Microbiol. 72:6825-6828. 3. Belfort, M. 1989. Bacteriophage introns: parasites within parasites? Trends Genet. 5:209-213. 4. Belfort, M., M. E. Reaban, T. Coetzee, and J. Z. Dalgaard. 1995. Prokaryotic introns and inteins: a panoply of form and function. J. Bacteriol. 177:3897-3903. 5. Belfort, M., and R. J. Roberts. 1997. Homing endonucleases: keeping the house in order. Nucleic Acids Res. 25:3379-3388. 6. Chen, C. L., T. Y. Pan, S. C. Kan, Y. C. Kuan, L. Y. Hong, K. R. Chiu, C. S. Sheu, J. S. Yang, W. H. Hsu, and H. Y. Hu. 2008. Genome sequence of the lytic bacteriophage P1201 from Corynebacterium glutamicum NCHU 87078: evolutionary relationships to phages from Corynebacterineae. Virology 378:226-232. 7. Chen, L., J. Benner, and F. B. Perler. 2000. Protein splicing in the absence of an intein penultimate histidine. J. Biol. Chem. 275:20431-20435. 8. Chong, S., F. B. Mersha, D. G. Comb, M. E. Scott, D. Landry, L. M. Vence, F. B. Perler, J. Benner, R. B. Kucera, C. A. Hirvonen, J. J. Pelletier, H. Paulus, and M. Q. Xu. 1997. Single-column purification of free recombinant proteins using a self-cleavable affinity tag derived from a protein splicing element. Gene 192:271-281. 9. Chong, S., G. E. Montello, A. Zhang, E. J. Cantor, W. Liao, M. Q. Xu, and J. Benner. 1998. Utilizing the C-terminal cleavage activity of a protein splicing element to purify recombinant proteins in a single chromatographic step. Nucleic Acids Res. 26:5109-5115. 10. Chong, S., Y. Shao, H. Paulus, J. Benner, F. B. Perler, and M. Q. Xu. 1996. Protein splicing involving the Saccharomyces cerevisiae VMA intein. The steps in the splicing pathway, side reactions leading to protein cleavage, and establishment of an in vitro splicing system. J. Biol. Chem. 271:22159-22168. 11. Chong, S., K. S. Williams, C. Wotkowicz, and M. Q. Xu. 1998. Modulation of protein splicing of the Saccharomyces cerevisiae vacuolar membrane ATPase intein. J. Biol. Chem. 273:10567-10577. 12. Colston, M. J., and E. O. Davis. 1994. The ins and outs of protein splicing elements. Mol. Microbiol. 12:359-363. 13. Cooper, A. A., and T. H. Stevens. 1995. Protein splicing: self-splicing of genetically mobile elements at the protein level. Trends Biochem. Sci. 20:351-356. 14. Cui, C., W. Zhao, J. Chen, J. Wang, and Q. Li. 2006. Elimination of in vivo cleavage between target protein and intein in the intein-mediated protein purification systems. Protein Expr. Purif. 50:74-81. 15. Curcio, M. J., and M. Belfort. 1996. Retrohoming: cDNA-mediated mobility of group II introns requires a catalytic RNA. Cell 84:9-12. 16. Dalgaard, J. Z., A. J. Klar, M. J. Moser, W. R. Holley, A. Chatterjee, and I. S. Mian. 1997. Statistical modeling and analysis of the LAGLIDADG family of site-specific endonucleases and identification of an intein that encodes a site- specific endonuclease of the HNH family. Nucleic Acids Res. 25:4626-4638. 17. Dalgaard, J. Z., M. J. Moser, R. Hughey, and I. S. Mian. 1997. Statistical modeling, phylogenetic analysis and structure prediction of a protein splicing domain common to inteins and hedgehog proteins. J. Comput. Biol. 4:193-214. 18. Damberger, S. H., and R. R. Gutell. 1994. A comparative database of group I intron structures. Nucleic Acids Res. 22:3508-3510. 19. Davis, E. O., H. S. Thangaraj, P. C. Brooks, and M. J. Colston. 1994. Evidence of selection for protein introns in the recAs of pathogenic mycobacteria. Embo J. 13:699-703. 20. Dawson, P. E., T. W. Muir, I. Clark-Lewis, and S. B. Kent. 1994. Synthesis of proteins by native chemical ligation. Science 266:776-779. 21. Derbyshire, V., and M. Belfort. 1998. Lightning strikes twice: intron-intein coincidence. Proc. Natl. Acad. Sci. USA 95:1356-1357. 22. Derbyshire, V., J. C. Kowalski, J. T. Dansereau, C. R. Hauer, and M. Belfort. 1997. Two-domain structure of the td intron-encoded endonuclease I-TevI correlates with the two-domain configuration of the homing site. J. Mol. Biol. 265:494-506. 23. Doolittle, R. F. 1993. The comings and goings of homing endonucleases and mobile introns. Proc. Natl. Acad. Sci. USA 90:5379-5381. 24. Duan, X., F. S. Gimble, and F. A. Quiocho. 1997. Crystal structure of PI-SceI, a homing endonuclease with protein splicing activity. Cell 89:555-564. 25. Ellison, E. L., and V. M. Vogt. 1993. Interaction of the intron-encoded mobility endonuclease I-PpoI with its target site. Mol. Cell Biol. 13:7531-7539. 26. Evans, J. R., S. D. Schwartz, J. D. McHugh, Y. Thamby-Rajah, S. A. Hodgson, R. P. Wormald, and Z. J. Gregor. 1998. Systemic risk factors for idiopathic macular holes: a case-control study. Eye 12 ( Pt 2):256-259. 27. Evans, T. C., Jr., J. Benner, and M. Q. Xu. 1999. The cyclization and polymerization of bacterially expressed proteins using modified self-splicing inteins. J. Biol. Chem. 274:18359-18363. 28. Flach, J., P. E. Pilet, and P. Jolles. 1992. What''s new in chitinase research? Experientia 48:701-716. 29. Garrett, R. A., J. Dalgaard, N. Larsen, J. Kjems, and A. S. Mankin. 1991. Archaeal rRNA operons. Trends Biochem. Sci. 16:22-26. 30. Giladi, M., G. Bitan-Banin, M. Mevarech, and R. Ortenberg. 2002. Genetic evidence for a novel thymidylate synthase in the halophilic archaeon Halobacterium salinarum and in Campylobacter jejuni. FEMS Microbiol. Lett. 216:105-109. 31. Gimble, F. S., and J. Thorner. 1993. Purification and characterization of VDE, a site-specific endonuclease from the yeast Saccharomyces cerevisiae. J. Biol. Chem. 268:21844-21853. 32. Gimble, F. S., and J. Wang. 1996. Substrate recognition and induced DNA distortion by the PI-SceI endonuclease, an enzyme generated by protein splicing. J. Mol. Biol. 263:163-180. 33. Goodrich-Blair, H., and D. A. Shub. 1996. Beyond homing: competition between intron endonucleases confers a selective advantage on flanking genetic markers. Cell 84:211-221. 34. Gorbalenya, A. E. 1994. Self-splicing group I and group II introns encode homologous (putative) DNA endonucleases of a new family. Protein Sci 3:1117-1120. 35. Graziani, S., Y. Xia, J. R. Gurnon, J. L. Van Etten, D. Leduc, S. Skouloubris, H. Myllykallio, and U. Liebl. 2004. Functional analysis of FAD-dependent thymidylate synthase ThyX from Paramecium bursaria chlorella virus-1. J. Biol. Chem. 279:54340-54347. 36. Hacker, J., G. Blum-Oehler, I. Muhldorfer, and H. Tschape. 1997. Pathogenicity islands of virulent bacteria: structure, function and impact on microbial evolution. Mol. Microbiol. 23:1089-1097. 37. Henke, R. M., R. A. Butow, and P. S. Perlman. 1995. Maturase and endonuclease functions depend on separate conserved domains of the bifunctional protein encoded by the group I intron aI4 alpha of yeast mitochondrial DNA. Embo J. 14:5094-5099. 38. Hickey, D. A. 1994. Protein introns: optional or essential? Trends Genet. 10:147-149. 39. Hodges, R. A., F. B. Perler, C. J. Noren, and W. E. Jack. 1992. Protein splicing removes intervening sequences in an archaea DNA polymerase. Nucleic Acids Res. 20:6153-6157. 40. Huang, C. J., and C. Y. Chen. 2005. High-level expression and characterization of two chitinases, ChiCH and ChiCW, of Bacillus cereus 28-9 in Escherichia coli. Biochem. Biophys. Res. Commun. 327:8-17. 41. Imoto, T., and K. A. Yagishita. 1971. A simple activity measurement of lysozyme. Agric. Biol. Chem. 35:1154-1156. 42. Jurica, M. S., and B. L. Stoddard. 1999. Homing endonucleases: structure, function and evolution. Cell Mol. Life Sci. 55:1304-1326. 43. Kane, P. M., C. T. Yamashiro, D. F. Wolczyk, N. Neff, M. Goebl, and T. H. Stevens. 1990. Protein splicing converts the yeast TFP1 gene product to the 69-kD subunit of the vacuolar H(+)-adenosine triphosphatase. Science 250:651-657. 44. Kawasaki, M., S. Nogami, Y. Satow, Y. Ohya, and Y. Anraku. 1997. Identification of three core regions essential for protein splicing of the yeast Vma1 protozyme. A random mutagenesis study of the entire Vma1-derived endonuclease sequence. J. Biol. Chem. 272:15668-15674. 45. Koonin, E. V. 1995. A protein splice-junction motif in hedgehog family proteins. Trends Biochem. Sci. 20:141-142. 46. Lambowitz, A. M. 1989. Infectious introns. Cell 56:323-326. 47. Lazarevic, V., B. Soldo, A. Dusterhoft, H. Hilbert, C. Mauel, and D. Karamata. 1998. Introns and intein coding sequence in the ribonucleotide reductase genes of Bacillus subtilis temperate bacteriophage SPbeta. Proc. Natl. Acad. Sci. USA 95:1692-1697. 48. Lee, J. J., S. C. Ekker, D. P. von Kessler, J. A. Porter, B. I. Sun, and P. A. Beachy. 1994. Autoproteolysis in hedgehog protein biogenesis. Science 266:1528-1537. 49. Li, S., Z. A. Zhao, M. Li, Z. R. Gu, C. Bai, and W. D. Huang. 2002. Purification and characterization of a novel chitinase from Bacillus brevis. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) 34:690-696. 50. Liu, X. Q. 2000. Protein-splicing intein: Genetic mobility, origin, and evolution. Annu. Rev. Genet. 34:61-76. 51. Liu, X. Q., J. Yang, and Q. Meng. 2003. Four inteins and three group II introns encoded in a bacterial ribonucleotide reductase gene. J. Biol. Chem. 278:46826-46831. 52. Loessner, M. J. 2005. Bacteriophage endolysins--current state of research and applications. Curr. Opin. Microbiol. 8:480-487. 53. Loizos, N., E. R. Tillier, and M. Belfort. 1994. Evolution of mobile group I introns: recognition of intron sequences by an intron-encoded endonuclease. Proc. Natl. Acad. Sci. USA 91:11983-11987. 54. Mathys, S., T. C. Evans, I. C. Chute, H. Wu, S. Chong, J. Benner, X. Q. Liu, and M. Q. Xu. 1999. Characterization of a self-splicing mini-intein and its conversion into autocatalytic N- and C-terminal cleavage elements: facile production of protein building blocks for protein ligation. Gene 231:1-13. 55. Mills, K. V., K. R. Connor, D. M. Dorval, and K. T. Lewandowski. 2006. Protein purification via temperature-dependent, intein-mediated cleavage from an immobilized metal affinity resin. Anal. Biochem. 356:86-93. 56. Monaghan, R. L., D. E. Eveleigh, R. P. Tewari, and E. T. Reese. 1973. Chitosanase, a novel enzyme. Nat. New Biol. 245:78-80. 57. Muir, T. W., D. Sondhi, and P. A. Cole. 1998. Expressed protein ligation: a general method for protein engineering. Proc. Natl. Acad. Sci. USA 95:6705-6710. 58. Muzzarelli, R. A., C. Jeuniaux, and G. W. Gooday. 1985. Chitin in Nature and Technology. Plenum Press Publishers, New York. 59. Muzzarelli, R. A., and M. G. Peter. 1997. Chitin Handbook. European Chitin Society Publishers, Atec, Grottammare, Italy. 60. Myllykallio, H., G. Lipowski, D. Leduc, J. Filee, P. Forterre, and U. Liebl. 2002. An alternative flavin-dependent mechanism for thymidylate synthesis. Science 297:105-107. 61. Nishioka, M., S. Fujiwara, M. Takagi, and T. Imanaka. 1998. Characterization of two intein homing endonucleases encoded in the DNA polymerase gene of Pyrococcus kodakaraensis strain KOD1. Nucleic Acids Res. 26:4409-4412. 62. Otomo, T., K. Teruya, K. Uegaki, T. Yamazaki, and Y. Kyogoku. 1999. Improved segmental isotope labeling of proteins and application to a larger protein. J. Biomol. NMR 14:105-114. 63. Pelletier, A., and J. Sygusch. 1990. Purification and characterization of three chitosanase activities from Bacillus megaterium P1. Appl. Environ. Microbiol. 56:844-848. 64. Perler, F. B. 2000. InBase, the Intein Database. Nucleic Acids Res. 28:344-345. 65. Perler, F. B. 1998. Protein splicing of inteins and hedgehog autoproteolysis: structure, function, and evolution. Cell 92:1-4. 66. Perler, F. B., E. O. Davis, G. E. Dean, F. S. Gimble, W. E. Jack, N. Neff, C. J. Noren, J. Thorner, and M. Belfort. 1994. Protein splicing elements: inteins and exteins--a definition of terms and recommended nomenclature. Nucleic Acids Res. 22:1125-1127. 67. Perler, F. B., G. J. Olsen, and E. Adam. 1997. Compilation and analysis of intein sequences. Nucleic Acids Res. 25:1087-1093. 68. Perlman, P. S., and R. A. Butow. 1989. Mobile introns and intron-encoded proteins. Science 246:1106-1109. 69. Pietrokovski, S. 1994. Conserved sequence features of inteins (protein introns) and their use in identifying new inteins and related proteins. Protein Sci. 3:2340-2350. 70. Pietrokovski, S. 1998. Identification of a virus intein and a possible variation in the protein-splicing reaction. Curr. Biol. 8:R634-635. 71. Pietrokovski, S. 1998. Modular organization of inteins and C-terminal autocatalytic domains. Protein Sci. 7:64-71. 72. Pietrokovski, S., and S. Henikoff. 1997. A helix-turn-helix DNA-binding motif predicted for transposases of DNA transposons. Mol. Gen. Genet. 254:689-695. 73. Saves, I., V. Ozanne, J. Dietrich, and J. M. Masson. 2000. Inteins of Thermococcus fumicolans DNA polymerase are endonucleases with distinct enzymatic behaviors. J. Biol. Chem. 275:2335-2341. 74. Shub, D. A., H. Goodrich-Blair, and S. R. Eddy. 1994. Amino acid sequence motif of group I intron endonucleases is conserved in open reading frames of group II introns. Trends Biochem. Sci. 19:402-404. 75. Sosa, M. A., F. Fazely, J. A. Koch, S. V. Vercellotti, and R. M. Ruprecht. 1991. N-carboxymethylchitosan-N,O-sulfate as an anti-HIV-1 agent. Biochem. Biophys. Res. Commun. 174:489-496. 76. Southworth, M. W., K. Amaya, T. C. Evans, M. Q. Xu, and F. B. Perler. 1999. Purification of proteins fused to either the amino or carboxy terminus of the Mycobacterium xenopi gyrase A intein. Biotechniques 27:110-114, 116, 118-120. 77. Suzuki, K., T. Mikami, Y. Okawa, A. Tokoro, S. Suzuki, and M. Suzuki. 1986. Antitumor effect of hexa-N-acetylchitohexaose and chitohexaose. Carbohydr. Res. 151:403-408. 78. Thamthiankul, S., S. Suan-Ngay, S. Tantimavanich, and W. Panbangred. 2001. Chitinase from Bacillus thuringiensis subsp. pakistani. Appl. Microbiol. Biotechnol. 56:395-401. 79. Tikhonov, V. E., L. V. Lopez-Llorca, J. Salinas, and H. B. Jansson. 2002. Purification and characterization of chitinases from the nematophagous fungi Verticillium chlamydosporium and V. suchlasporium. Fungal Genet. Biol. 35:67-78. 80. Tokoro, A., N. Tatewaki, K. Suzuki, T. Mikami, S. Suzuki, and M. Suzuki. 1988. Growth-inhibitory effect of hexa-N-acetylchitohexaose and chitohexaose against Meth-A solid tumor. Chem. Pharm. Bull. (Tokyo) 36:784-790. 81. Tori, K., B. Dassa, M. A. Johnson, M. W. Southworth, L. E. Brace, Y. Ishino, S. Pietrokovski, and F. B. Perler. 2010. Splicing of the mycobacteriophage Bethlehem DnaB intein: identification of a new mechanistic class of inteins that contain an obligate block F nucleophile. J. Biol. Chem. 285:2515-2526. 82. Wang, S. L., W. J. Hsiao, and W. T. Chang. 2002. Purification and characterization of an antimicrobial chitinase extracellularly produced by Monascus purpureus CCRC31499 in a shrimp and crab shell powder medium. J. Agric. Food. Chem. 50:2249-2255. 83. Wende, W., W. Grindl, F. Christ, A. Pingoud, and V. Pingoud. 1996. Binding, bending and cleavage of DNA substrates by the homing endonuclease Pl-SceI. Nucleic Acids Res. 24:4123-4132. 84. Wittmayer, P. K., and R. T. Raines. 1996. Substrate binding and turnover by the highly specific I-PpoI endonuclease. Biochemistry 35:1076-1083. 85. Wood, D. W., W. Wu, G. Belfort, V. Derbyshire, and M. Belfort. 1999. A genetic system yields self-cleaving inteins for bioseparations. Nat. Biotechnol. 17:889-892. 86. Xu, M. Q., and F. B. Perler. 1996. The mechanism of protein splicing and its modulation by mutation. Embo J. 15:5146-5153. 87. Yamashita, Y., and K. Okazaki. 2004. Purification and antifungal activity of recombinant chitinase from Escherichia coli carrying the family 19 chitinase gene of Streptomyces sp. J-13-3. Biosci. Biotechnol. Biochem. 68:2193-2196. 88. Zikakis, J. P. 1984. Chitin, Chitosan and Related Enzymes. Academic Press Publishers, Orlando.
摘要: 
從高產量之味精生產菌株Corynebacterium glutamicum NCHU 87078中選殖出兩個可能參與thymidylate合成的基因,分別命名為CgthyA及CgthyX。將兩基因分別構築在pQE30表現載體上進行大量表現並純化蛋白。CgThyA的thymidylate synthase A (ThyA) 活性為414 mU mg-1 protein,但由酵素活性或功能性互補實驗的結果顯示CgThyX不具活性。典型ThyX之結構為四聚體 (homotetramer),但由膠體過濾 (gel filtration) 及化學偶合(cross-linking) 分析實驗結果初步解得CgThyX屬於雙聚體 (dimer) 。根據光譜 (spectroscopic) 分析發現,CgThyX未如預期與典型之ThyX在450及380 nm具有最大吸收波峰,顯示CgThyX可能缺乏與FAD結合的能力。蛋白質晶體結構的解析指出CgThyX•FAD此複合物晶體的結構解析度達2.3Å,計算次單位間的作用力 (distance≦3.8 Å) 發現,由於單元體間的作用力較少,導致CgThyX形成四聚體時結構較為鬆散。根據結構所設計的突變實驗結果顯示,位於70~73之胺基酸殘基能幫助FAD上的黃素環正確形成有效的催化位置,達到催化反應的進行。本研究證明C. glutamicum中的ThyX不具ThyX活性, C. glutamicum中是藉由ThyA蛋白進行thymidylate的合成。
從corynephage P1201基因體中,將ORF12、16及56分別選殖出並構築至表現載體pET28b後進行大量表現,得到的蛋白產物大小分別為68kDa、103kDa及97kDa,分別命名為CP1201ThyX、CP1201Ter1及CP1201RIR1。由西方墨點法分析後確知此三個蛋白質均具備intein 的功能,能將自身切割成兩個片段,切割後之片段及大小分別為32kDa (putative thymidylate synthase X) 及36kDa (intein 12)、63kDa (putative terminase) 及40kDa (intein 16)、78kDa (putative ribonucleoside diphosphate reductase α subunit) 及19kDa (intein 56)。即時定量 PCR的分析結果顯示,在噬菌體感染宿主細胞過程中,噬菌體本身所攜帶的thymidylate synthase基因 CP1201ThyX 基因會大量表現,表現量提高為未感染時的2000倍。由西方墨點分析得知,於噬菌體感染初期即可偵測到CP1201ThyX蛋白的表現,且有intein 切割反應的發生。在分析CP1201RIR1的全蛋白產物是否能有效率切割以回收純化目標基因產物的過程中,得到一變異株G392S,能受到溫度的調控以誘導切割反應的進行。由Conserved domain database比對後發現ORF38基因具有chitinase之功能性區域,遂選殖此基因至pQE30載體上並進一步純化回收蛋白。以ethylene glycol chitin (EGC)及chitosan為受質時,其chitinase及chitosanase的活性分別為8.9 mUmg-1及30 mUmg-1protein。

The genome of Corynebacterium glutamicum NCHU 87078 contains two putative thymidylate synthase genes, designated CgthyA and CgthyX. These two genes were expressed in Escherichia coli NovaBlue and the expressed His6-tagged enzymes were purified by nickel-chelate chromatography. The purified CgThyA had a specific activity of 414 mU mg-1 protein, whereas thymidylate synthase activity for CgThyX could not be detected in a functional complementation assay using a 10 days incubation period. Gel filtration chromatography and chemical cross-linking experiments showed that CgThyX may exist as a dimer in solution, unlike a typical ThyX protein with homotetrameric structure for catalytic activity. Spectroscopic analysis indicated that purified CgThyX lacked the cofactor FAD. The 2.3 Å resolution crystal structure of CgThyX-FAD demonstrated a loose tetramer, in which FAD is chelated between the subunits via a manner distinct from that of other flavin-dependent thymidylate synthases. Structure-based mutational studies have identified a non-conserved segment (residues 70~73) of CgThyX protein with crucial role in binding to FAD. Taken together, our biochemical and structural analyses highlight unique features of the C. glutamicum ThyX that distinguish this enzyme from ThyX proteins from other organisms. Our results also suggest that thymidylate synthesis in C. glutamicum requires ThyA but not ThyX.
Open Reading Frames (ORFs) of 12, 16 and 56, designated as CP1201ThyX, CP1201Ter1 and CP1201RIR1, in corynephage P1201 genome were cloned into expression vector pET28b and expressed in Escherichia coli BL21(DE3). Gene products with molecular masses of 68, 103 and 97 kDa were purified by Ni-column chromatography. CP1201ThyX gene product could be spliced into two fragments, putative thymidylate synthase X (ThyX) and intein 12, with sizes of 32 and 36 kDa. CP1201Ter1 gene product was spliced into two fragments, putative terminase and intein 16, with sizes of 63 and 40 kDa. CP1201RIR1 gene product was spliced into two fragments, putative ribonucleoside diphosphate reductase (RNR) α subunit and intein 56, with sizes of 78 and 19 kDa. Expression level of CP1201thyX gene in phage-infected Corynebacterium glutamicum was about 2000-fold higher than that of uninfected cell by real-time PCR. Western blot analysis revealed that CP1201ThyX protein was highly expressed and spliced into two fragments in the course of phage infection. We found that CP1201RIR1 with G392S mutation became a temperature-sensitive intein. Conserved domain database revealed that ORF38 possesses chitinase domain. This ORF was cloned into pQE30 vector and expressed in E. coli NovaBlue. The purified protein had specific activities of 30 mU mg-1 and 8.9 mU mg-1 protein to crab chitosan and ethylene glycol chitin (EGC), respectively.
URI: http://hdl.handle.net/11455/22105
其他識別: U0005-1008201014143700
Appears in Collections:分子生物學研究所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.