Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/22116
標題: 噬菌體 P1201 的 Ant4 蛋白與 Corynebacterium glutamicum NCHU87078 蛋白之間的交互作用
Interaction of corynephage P1201 Ant4 to the proteins from Corynebacterium glutamicum NCHU 87078
作者: 黃炳綬
Huang, Bing-Shou
關鍵字: corynephage P1201;噬菌體P1201;Ant4;Corynebacterium glutamicum;protein-protein interaction;transcriptional factor;Ant4;Corynebacterium glutamicum;蛋白質交互作用;轉錄調控因子
出版社: 分子生物學研究所
引用: 1.潘志龍。 1997 Corynebacterium glutamicum DAHP synthase 與 Prephenate dehydratase 之間的蛋白質交互作用。 碩士論文,分子生物學研究所,中興大學,台中。 2.潘姿穎。 2002 開發 Corynebacterium glutamicum 之表現載體俾應用於外源基因之大量表現。 碩士論文,分子生物學研究所,中興大學,台中。 3.Aki, T., and S. Adhya. 1997. Repressor induced site-specific binding of HU for transcriptional regulation. EMBO J. 16:3666–3674. 4.Aranda, M., and A. Maule. 1998. Virus-induced host gene shutoff in animals and plants. Virology 243:261–267. 5.Arndt, A., and B. J. Eikmanns. 2007. The Alcohol Dehydrogenase Gene adhA in Corynebacterium glutamicum Is Subject to Carbon Catabolite Repression. J. Bacteriol. 189:7408–7416. 6.Baumbach, J., K. Brinkrolf, L. F Czaja, S.Rahmann, and A. Tauch. 2006. CoryneRegNet: An ontology-based data warehouse of corynebacterial transcription factors and regulatory networks. BMC Genomics 7:24-35. 7.Betermier, M., P. Rousseau, R. Alazard, and M. Chandler. 1995. Mutual stabilization of bacteriophage Mu repressor and histone-like proteins in nucleoprotein structure. J. Mol. Biol. 249:332–341. 8.Bideshi, D. K., S. Renault, K. Stasiak, B. A. Federici, and Y. Bigot. 2003. Phylogenetic analysis and possible function of Bro-like genes, a multigene family widespread among large double-stranded DNA viruses of invertebrates and bacteria. J. Gen. Virol. 84:2531-2544. 9.Bonnefoy, E., and J. Rouviere-Yaniv. 1992. HU,the major histone-like protein of E.coli, modulates the binding of IHF to oriC. EMBO J. 11:4489-4496. 10.Chen, C. L., T. Y. Pan, S. C. Kan, Y. C. Kuan, L. Y. Hong, K. R. Chiu, C. S. Sheu, J. S. Yang, W. H. Hsu, H. Y. Hu. 2008. Genome sequence of the lytic bacteriophage P1201 from Corynebacterium glutamicum NCHU 87078: Evolutionary relationships to phages from Corynebacterineae. Virology 378:226–232. 11.Cramer, A., R. Gerstmeir, S. Schaffer, M. Bott, and B. J. Eikmanns. 2006. Identification of RamA, a novel LuxR-type transcriptional regulator of genes involved in acetate metabolism of Corynebacterium glutamicum. J. Bacteriol. 188:2554–2567. 12.Dominguez, H., M. Cocaign-Bousquet, and N. D. Lindley. 1997. Simultaneous consumption of glucose and fructose from sugar mixtures during batch growth of Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 47:600–603. 13.Engels, V., and V. F. Wendisch. 2007. The DeoR-type regulator SugR represses expression of ptsG in Corynebacterium glutamicum. J. Bacteriol. 189:2955–2966. 14.Flashner, Y. a. J. D. G. 1988. DNA dynamic flexibility and protein recognition: Differential stimulation by bacterial histone-like protein HU. Cell 54:713–721. 15.Gaigalat, L., J. Schlüter, M. Hartmann, S. Mormann, A. Tauch, A. Pühler, and J. Kalinowski. 2007. The DeoR-type transcriptional regulator SugR acts as a repressor for genes encoding the phosphoenolpyruvate:sugar phosphotransferase system (PTS) in Corynebacterium glutamicum. BMC Mol. Biol. 8:104-123. 16.Gerstmeir, R., A. Cramer, P. Dangel, S. Schaffer, and B. J. Eikmanns. 2004. RamB, a novel transcriptional regulator of genes involved in acetate metabolism of Corynebacterium glutamicum. J. Bacteriol. 186:2798–2809. 17.Hansen, E. B. 1989. Structure and regulation of the lytic replicon of phage P1. J. Mol. Biol. 207:135-149. 18.Heisig , A., H. Riedel, B. Dobrinski, R. Lurz and H. Schuster. 1989. Organization of the immunity region immI of bacteriophage P1 and synthesis of the P1 antirepressor. J. Mol. Biol. 209:525-538. 19.Hermann, T. 2003. Industrial production of amino acids by coryneform bacteria. J. Biotechnol. 104:155-172. 20.Iyer, L. M., E. V. Koonin, and L. Aravind. 2002. Extensive domain shuffling in transcription regulators of DNA viruses and implications for the origin of fungal APSES transcription factors. Genome Biol. 3:1-11. 21.Jochmann, N., A. Kurze, L. F. Czaja, K. Brinkrolf, I. Brune, A. T. Hu¨ser, N. Hansmeier, A. Pu¨hler, I. Borovok and A. Tauch. 2009 Genetic makeup of the Corynebacterium glutamicum LexA regulon deduced from comparative transcriptomics and in vitro DNA band shift assays. Microbiology 155:1459–1477. 22.Kang, W., M. Kurihara, and S. Matsumoto. 2006. The Bro proteins of Bombyx mori nucleopolyhedrovirus are nucleocytoplasmic shuttlin proteins that utilize the CRM1-mediated nuclear export pathway. Virology 350:184-191. 23.Kang, W., M. Suzuki, E. Zemskov, K. Okano, and S. Maeda. 1999. Characterization of Baculovirus Repeated Open ReadingFrames (bro) in Bombyx mori Nucleopolyhedrovirus. J. Virol. 73:10339–10345. 24.Kinoshita, S., S. Udaka, and M. Shimono. 1957. Studies on the amino acid fermentation. I. Production of l-glutamic acid by various microorganisms. J. Gen. Appl. Microbiol. 3:193-205. 25.Knaus, K. J., M. Morillas, W. Swietnicki, M Malone, W. K. Surewicz,, and V. C. Yee. 2001. Crystal structure of the human prion protein reveals a mechanism for Oligomerization. Nature Structural boil. 8:770-774. 26.Koerner, J. F., and D. P. Snustad. 1979. Shutoff of host macromolecular synthesis after T-even bacteriophage infection. Microbiol. Rev. 43:199–223. 27.Kronemeyer, W., N. Peekhaus, R. Kra¨mer, H. Sahm, and L. Eggeling. 1995. Structure of the gluABCD cluster encoding the glutamate uptake system of Corynebacterium glutamicum. .J. Bacteriol. 177:1152-1158. 28.Laemmli, U. K. 1970. Cleavage of structure proteins during the assembly of the head of bacteriophage T4. Nature 227:680-685. 29.Le Grice, S. F. J., and F. Gruninger-leitch. 1990. Rapid purification of homodimer and heterodimer HIV-1 reverse transcriptase by metal chelate affinity chromatography. Eur. J. Biochem. 187:307-314. 30.León, E., G. Navarro-Avilés, C. M. Santiveri, C. Flores-Flores, M. Rico, C. González, F. J. Murillo, M. Elîas-Arnanz, M. A. Jiménez, and S. Padmanabhan. 2010. A bacterial antirepressor with SH3 domain topology mimics operator DNA in sequestering the repressor DNA recognition helix. Nucl. Acids Res. In press. 31.Lopez-Rubio, J. J., M. Elias-Arnanz, S. Padmanabhan, and F. J. Murillo. 2002. A repressor-antirepressor pair links two loci controlling light-induced carotenogenesis in Myxococcus xanthus. J. Biol. Chem. 277:7262-7270. 32.Mardanov, A. V., and N. V. Ravin. 2007. The antirepressor needed for induction of linear plasmid-prophage N15 belongs to the SOS regulon. J. Bacteriol. 189:6333-6338. 33.Mortz, E., T. N. Krogh, H. Vorum, and A. Görg. 2001. Improved silver staining protocols for high sensitivity protein identification using matrix-assisted laser desorption/ionization-time of flight analysis. Proteomics 1:1359-1363. 34.Ogino, H., H. Teramoto, M. Inui, and H. Yukawa. 2008. DivS, a novel SOS-inducible cell-division suppressor in Corynebacterium glutamicum. Mol. Microbiol. 67(3):597-608. 35.Preobrajenskaya, O., A. Boullard, F. Boubrick, M. Schnarr, and J. Rouvie`re-Yaniv. 1994. The protein HU can displace the LexA repressor from its DNA-binding sites. .Mol. Microbiol. 13::459–467. 36.Riedel, H. D., J. Heinrich, A. Heisig, T. Choli, and H. Schuster. 1993. The antirepressor of phage P1. Isolation and interaction with the C1 repressor of P1 and P7. FEBS. Lett. 334:165-169. 37.Rimsky, S., F. Zuber, M. Buckle, and H. Buc. 2001. A molecular mechanism for the repression of transcription by the H-NS protein. Mol. Microbiol. 42:1311-1323. 38.Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a labratory manual. Cold Spring Harbor Labratory, N. Y. 39.Shearwin, K. E., A. M. Brumby, and J. B. Egan. 1998. The Tum protein of coliphage 186 is an antirepressor. J. Biol. Chem. 273:5708-5715. 40.Stansen, C., D. Uy, S. Delaunay, L. Eggeling, J. L. Goergen, and V. F. Wendisch. 2005. Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production. Appl. Environ. Microbiol. 71:5920–5928. 41.Tanaka, Y., H. Teramoto, M. Inui, H. Yukawa. 2008. Regulation of expression of general components of the phosphoenolpyruvate: carbohydrate phosphotransferase system (PTS) by the global regulator SugR in Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 78:309–318. 42.Tomas, E., T. S. Tsao, A. K. Saha, H. E. Murrey, C. Zhang Cc, S. I. Itani, H. F. Lodish, and N. B. Ruderman. 2002. Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation. Proc. Natl. Acad. Sci. 99:16309–16313. 43.Toyoda, K., H. Teramoto, M. Inui, and H. Yukawa. 2008. Expression of the gapA gene encoding glyceraldehyde-3-phosphate dehydrogenase of Corynebacterium glutamicum is regulated by the global regulator SugR. Appl. Microbiol. Biotechnol. 81:291–301. 44.Toyoda, K., H. Teramoto, M. Inui, and H. Yukawa. 2009. Molecular mechanism of SugR-mediated sugar-dependent expression of the ldhA gene encoding L-lactate dehydrogenase in Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 83:315–327. 45.Tsao, T., E.Tomas, H. E. Murrey, C. Hug, D. H. Lee, N. B. Ruderman, J. E. Heuser, and H. F. Lodish. 2003. Role of Disulfide Bonds in Acrp30/Adiponectin Structure and Signaling Specificity. J. Biol. chem. 278:50810–50817. 46.Tsao, T. S., H. E. Murrey, C. Hug, D. H. Lee, and H. F. Lodish. 2002. Oligomerization state-dependent activation of NF-kappa B signaling pathway by adipocyte complement-related protein of 30 kDa (Acrp30). J. Biol. Chem. 277:29359-29362. 47.Wendisch, V. F. 2006. Genetic egulation of Corynebacterium glutamicum metabolism. J. Microbiol. Biotechnol. 16:999–1009. 48.Wendisch, V. F., A. A. de Graaf, H. Sahm, and B. J. Eikmanns. 2000. Quantitative determination of metabolic fluxes during coutilization of two carbon sources: comparative analyses with Corynebacterium glutamicum during growth on acetate and/or glucose. J. Bacteriol. 182:3088–3096. 49.Yamauchi, T., J. Kamon, Y. Minokoshi, Y. Ito, H. Waki, S. Uchida, S. Yamashita, M. Noda, S. Kita, K. Ueki, K. Eto, Y. Akanuma, P. Froguel, F. Foufelle, P. Ferre, D. Carling, S. Kimura, R. Nagai, B.B. Kahn, and T. Kadowaki. 2002. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat. Med. 8:1288-1295. 50.Zemskov, E. A., W. Kang, and S. Maeda. 2000. Evidence for nucleic acid binding ability and nucleosome association of Bombyx mori nucleopolyhedrovirus Bro proteins. J. Virol. 74:6784-6789.
摘要: 
本實驗室從味精生產菌 Corynebacterium glutamicum NCHU 87078 醱酵液中分離出之corynephage P1201,屬於線性雙股 DNA 溶裂性噬菌體。其基因體具有 ant4 基因,此基因在溶裂性噬菌體中的生理角色,仍無文獻報導。實驗室前人曾發現 Ant4 蛋白會抑制C. glutamicum NCHU 87078 之生長。以 RT-PCR 及 Western blotting 偵測 ant4 在 corynephage P1201 感染時的表現情形,發現其屬於病毒感染的早期基因。由於 Ant4 蛋白之 C 端 KilAC domain 可能與其他蛋白產生交互作用,本研究利用固定化金屬離子親和性層析法從 C. glutamicum NCHU 87078分離出與 Ant4 蛋白交互作用的蛋白,並利用 pull down assay 及免疫沉澱法進行蛋白質交互作用的驗證。發現 Ant4 會與 C. glutamicum NCHU 87078 的轉錄調控因子: SugR 、 RamA 、 RamB 及 LexA 產生交互作用,並確認 Ant4 蛋白 C 端的 KilC domain 為參與蛋白質交互作用的主要區域。 gel shift assay 的結果顯示,高濃度的 Ant4會抑制RamA 與含有C/TGGGG(G)(G)T/C 及 ACCCC(C)A/T/G 序列之 DNA 片段的結合,此 DNA 片段位於 aceA 及 aceB 基因間的 promoter 區域內。 real-time PCR 分析的結果顯示,由 RamA 及 RamB所調控之酒精代謝以及 acetate 代謝相關的基因表現量皆下降,而由 LexA 所調控的 divS 基因則有 derepression 的現象。 divS 的基因產物為 cell division suppressor ,可能與 Ant4 抑制 C. glutamicum NCHU 87078 生長的機制有關。以上結果顯示Ant4蛋白能夠與宿主細胞的轉錄調控因子交互作用,並調控其與 promoter/operator 的結合能力。

Lytic phage P1201 was isolated from Corynebacterium glutamicum NCHU 87078 during an industrial fermentation for glutamic acid production. P1201 genome contains an ant4 gene encoding a putative antirepressor, while the biological roles of this gene in the lytic phage P1201 remain to be elucidated. Growth of C. glutamicum NCHU 87078 is inhibited by the expression of ant4 gene. Reverse transcription-PCR and Western Blotting analysis indicated that the expression of ant4 gene occurs at the early satge of infection. Since the C-terminal KilAC domain of Ant4 may involve in protein-protein interaction, immobilized metal affinity chromatography was performed to isolate Ant4-interacting proteins from C. glutamicum. Pull-down experiments and immunoprecipitation were also performed to identify the proteins interacting with Ant4. We found that Ant4 interacted with transcriptional regulators, SugR, RamA, RamB, and LexA of C. glutamicum NCHU 87078, and the C-terminal KilC domain is required for protein-protein interaction. Gel shift assay revealed that high concerntration of Ant4 could inhibit the binding of RamA to the sequence of C/TGGGG(G)(G)T/C and ACCCC(C)A/T/G in the promoter region between aceA and aceB genes. The data from real-time PCR assay indicated that Ant4 inhibited the expression of the genes regulated by RamA and RamB, including the genes involved in acetate and ethanol metabolisms, but up-regulated the divS gene, which is regulated by LexA. The expression of divS gene encoding a cell division suppressor may lead to cell growth inhibition of C. glutamicum. Our data suggested that Ant4 interacted with the transcriptional regulators of C. glutamicum NCHU 87078 and subsequently modulated their binding to promoter/operator regions.
URI: http://hdl.handle.net/11455/22116
其他識別: U0005-1208201013012500
Appears in Collections:分子生物學研究所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.