Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2213
標題: 利用樑與薄膜結構之鋯鈦酸鉛換能器
Feasibility Study of PZT Transducer Using Beam-Membrane Structure
作者: 陳麗同
Chen, Li-Tong
關鍵字: low frequency;低頻;piezoelectric generate device;transformer;壓電發電裝置;變壓器
出版社: 機械工程學系所
引用: [1] J. A. Paradiso, and T. Starner, “Energy Scavenging for Mobile and Wireless Electronics Pervasive,” Pervasive computing, pp. 18–27, 2005. [2] 廖偉翔,壓電換能器於低頻發電應用之設計與分析,國立成功大學機械工程系碩士論文,2007。 [3] J. Ajitsaria, S. Y. Choe, D, Shen, and D. J. Kim, “Modeling and Analysis of A Bimorph Piezoelectric Cantilever Beam for Voltage Generation,” Smart Materials and Structure, Vol. 16, pp.447-454, 2007. [4] Z. Yang, and Q. M. Wang, “Transient Response of Piezoelectric Thin-Film Vibration Sensor Under Pulse Excitation,” Journal of Applied Physics, Vol. 99, 2006. [5] 許家振,應用有限元素法於具壓電轉換器之懸臂樑模態分析,國立屏東科技大學,碩士論文,2004。 [6] 周卓明,壓電力學,全華科技圖書股份有限公司。 [7] J. Q. Liu, H. B. Fang, Z. Y. Xu, X. H. Mao, X. C. Shen, D. Chen, H. Liao, and B. C. Cai, “A MEMS-Base Piezoelectric Power Generator Array for Vibration Energy Harvesting,” Microelectronics Journal, Vol. 39, pp. 802-806, 2008. [8] W. S. Liao, S. H. Wang, W. S. Yao, and M. C. Tsai, “Analysis and Design of Electric Power Generation with PZT Ceramics on Low-Frequency, IEEE International Conference on Industrial Technology, 2008. [9] Y. Song, Z. Wang, and Y. Du, “Theoretical and Experimental Research on Piezoelectric Sensors Response to Dynamic Strain,” International Conference on Electronic Measurement and Instruments, pp.194-198, 2007. [10] L. Yu, M. Gao, and J. Lu, “Research the Dependence of Output Voltage and Charge on the Width of Piezoelectric vibrating Device,” Global Symposium on Millimeter Waves, 2008. [11] S. Priya, C.T. Chen, D. Fye and J. Zahnd, “Piezoelectric Windmill: A Novel Solution to Remote Sensing,” Japanese Journal of Applied Physics, Vol.44, No.3, pp.104-107, 2005. [12] 林盈旭,壓電式振動微發電機之設計與製作,國立中興大學機械工程研究所碩士論文,2003。 [13] T. Wu, and P. I. Ro, “Dynamic Peak Amplitude Analysis and Bonding Layer Effects of Piezoelectric Bimorph Cantilevers,” Smart Materials and Structures, Vol. 13, pp. 203-210, 2004. [14] R. D. Bievins, “Formulas for Natural Frequency and Mode Shape,” Krieger Publishing Company. [15] J. Yang, “Piezoelectric Transformer Structural Modeling-A Review,” IEEE Transactions on Ultrasonics, Vol. 54, No. 6, pp. 1154-1170, 2007. [16] D. M. Lin, K. H. Lam, S. Wang, and Helen, L. W. Chan, “A Lead-Free Piezoelectric Transformer in Radial Vibration Modes,” American Institute of Physical, Vol. 78, 2007. [17] N. Y. Wong, Y. Zhang, H. L. W. Chan, and C. L. Choy, “A Bilayer Piezoelectric Transformer Operating in A Bending Vibration Mode,” Materials Science and Engineering, B. 99, pp. 164-167, 2003. [18] J. M. Fernandez, and Y. Perriard, “Optimization Methodology for Piezoelectric Transformers Design,” Proceedings - IEEE Ultrasonics Symposium, pp. 2539-22542, 2007. [19] F. Wang, J. Wu, and Y. Jia, “Rosen-Type Pb( ) - Single Crystal Piezoelectric Transformer,” Review of Scientific Instruments, Vol. 78, 2007. [20] F. Wang, W. Ge, P. Yu, X. Zhao, H. Luo, Y. Zhang and J. Wu, “Multilayer Rosen-Type Piezoelectric Transformer Prepared With Pb( ) - , Single Crystal” Journal of Physics D: Applied Physics, 2008. [21] J. Hu, Y. Fuda, M. Katsuno, and T. Yoshida, “A Study on the Rectangular-Bar-Shaped Multilayer Piezoelectric Transformer Using Length Extensional Vibration Mode,” Journal of Applied physical, Vol. 38, pp. 3208-3212, 1999. [22] 董志強,智慧型材料驅動機械手之設計,國立中央大學 機械研究所,碩士論文,2007。 [23] 楊志仁,壓電驅動機構設計與分析,國立屏東科技大學, 碩士論文,2003。 [24] D. H. Wu, W. T. Chien, C. J. Yang, and Y. T. Yen, “Coupled-field Analysis of Piezoelectric Beam Actuator Using FEM,” Sensors and Actuators, A 118 , pp. 171–176, 2005. [25] F. Wang, G. J. Tang, and D. K. Li, “Accurate Modeling of a Piezoelectric Composite Beam,” Smart Materials and Structure, pp. 1595-1602, 2007. [26] K. H. Low, G. B. Chai, T. M. Lim, and S. C. Sue, “Comparisons of Experimental and Theoretical Frequencies for Rectangular Plates Various Boundary Conditions and Added Masses,” J. Mech. Sci, Vol. 40, No. 11, pp.1119-11131, 1998. [27] C. G. Boay, “Frequency Analysis of Rectangular Isotropic Plates Carrying a Concentrated Mass,” Computer & Structure, Vol. 56, No. 1, pp.39-48, 1995. [28] K. H. Low, and G. B. Chai, “An Improved Model for Predicting Fundamental Frequencies of Plates Carrying Multiple Masses,” Journal of Sound and Vibration, Vol. 200, pp. 235-239, 1997. [29] C. C. Wu, “Development of PZT Thin- Film Microactuators,” University of Washington, Department of Mechanical Engineering, 2006. [30] W. Zhang, G. Meng, H. Li, “Adaptive Vibration Control of Micro-Cantilever Beam With Piezoelectric Actuator in MEMS,” International Journal of Advanced Manufacturing Technology, Vol. 28 , pp. 321-327, 2005. [31] C. Li, “Foundations of MEMS,” Pearson Prentice Hall, 2006. [32]彭泰龍,壓電式發電裝置研究, 國立中興大學機械工程研究所碩 士論文,2007。
摘要: 
本文主要是探討低於頻率1 kHz下壓電換能器。目前以薄膜-樑結構作為發電機與變壓器。而發電機發電原理以貼附在樑上PZT塊材做為激振器,當樑被激振產生擺動與共振時,將振動能量傳送到薄膜,使貼附在薄膜上PZT塊材因振動產生電壓。且在設計貼附壓電陶瓷材料,輸入為一個電極在輸出方面為多個電極形式增加輸出電壓量。壓電變壓器設計構想使樑-薄膜兩結構頻率相近,讓效能發揮最大。
將設計好的結構進行振動量測得到實驗頻率,其驗證頻率方面可藉由有限元素法及相關理論公式比較驗證,結果三組頻率驗證都很接近,誤差在10%內。尺寸探討第一組:薄膜尺寸15cm×15cm×4mm,樑尺寸 2.54cm×2.4mm×2.4mm,發電量為37.6 mV。第二組為了發電量增大,增加樑尺寸擺動力增大:薄膜尺寸:15cm×15cm×4mm,樑尺寸: 5cm×8mm×8mm ,發電量為88 mV。為了讓發電量到達最佳值探討尺寸優化部份,探討樑寬度、長度與薄膜厚度以及PZT塊材擺放位置對電壓關係式,其優化尺寸:薄膜尺寸:15cm×15cm×3mm,樑尺寸:15cm×8mm×8mm,電壓輸出效應為110 mV,是原先第一組設計高出3倍

The main objective of this thesis is to study piezoelectric transducers at frequency below 1 kHz. A piezoelectric generator and a piezoelectric transformer are designed and developed. A piezoelectric generator is driven by mechanical vibration at a specific frequency close to a resonance frequency of structure and produced an output voltage at the same frequency. The energy flows from the mechanical fields of vibration to the output electric energy. A beam-membrane structure; a cantilever beam with a PZT ceramic and one pair of input electrodes on the center of a membrane with a PZT ceramic and more than one pair of output electrodes; has been used to develop the piezoelectric generator. The voltage is generated from the PZT ceramic on chromium-copper membrane when chromium-copper cantilever beam is stretched by ambient vibration or is driven by PZT ceramic. In the other hand, a piezoelectric transformer is driven by an input voltage near a resonance of structure to generate mechanical vibration and produce an output voltage under mechanical loads at the same frequency. The energy flows from the electrical energy of the input to the mechanical fields of vibration, then back to the output electric energy.

Typically, deign resonance frequencies and output voltage of piezoelectric generator and transformer is crucial to its performance. This thesis used theoretical and numerical analysis to calculate the resonance frequencies of beam-membrane piezoelectric transducers. In the meantime, resonance frequencies and relative mode shapes of transducers are also measured experimentally. Resonance frequencies from theoretical model and from finite element model agree very well with experimental results, and error is less than 10%. Using theoretical and finite element model, geometry of beam-membrane piezoelectric generator is designed to get better output voltage. Three different sizes of piezoelectric transducer are developed in this thesis. The three sizes of beam-membrane generators are 25.4mm2.4mm2.4mm, 50mm8mm8mm, and 150mm8mm8mm, respectively, for cantilever beams and 150mm150mm4mm, 150mm150mm4mm, 150mm150mm3mm for membranes, respectively. The output voltage from third design of transducer is three times larger than first design of transducer.
URI: http://hdl.handle.net/11455/2213
其他識別: U0005-0708200920395700
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.