Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/22133
標題: 水稻台農六十七號及其感鹽突變體SA0604、耐鹽突變體SM75於初期鹽害逆境下蛋白質體分析
Comparative Proteomic Analysis of Initial Salt-stressed Rice Seedlings TNG67 and its Salt-sensitive Mutant SA0604, Salt-tolerant Mutant SM75
作者: 徐裕凱
Hsu, Yu-Kai
關鍵字: salt stress;鹽害逆境;proteomics;蛋白質體
出版社: 分子生物學研究所
引用: 卓緯玄 (2007). "水稻台農67號突變品系萌芽期與秧苗期耐鹽性之生理分析." 國立中興大學生命科學研究所碩士學位論文. 陳玉如 (2003). "質譜技術與蛋白質體學." 醫藥基因生物技術教學資源中心. 陳官治、黃真生 (1984). "疊氮化鈉對水稻台農 67 號之誘變效應." 中華農業研究 33: 345-353. 鄭宇翔 (2009). "水稻根部於鹽逆境下泛素修飾蛋白質體分析." 國立中興大學分子生物學研究所碩士學位論文. Alam, I., D. G. Lee, et al. (2010). "Proteome analysis of soybean roots under waterlogging stress at an early vegetative stage." J Biosci 35(1): 49-62. Alverdi, V., F. Di Pancrazio, et al. (2005). "Determination of protein phosphorylation sites by mass spectrometry: a novel electrospray-based method." Rapid Commun Mass Spectrom 19(22): 3343-3348. Banerjee, J. and M. K. Maiti (2010). "Functional role of rice germin-like protein1 in regulation of plant height and disease resistance." Biochem Biophys Res Commun 394(1): 178-183. Biemann, K. (1988). "Contributions of mass spectrometry to peptide and protein structure." Biomed Environ Mass Spectrom 16(1-12): 99-111. Blumwald, E., G. S. Aharon, et al. (2000). "Sodium transport in plant cells." Biochim Biophys Acta 1465(1-2): 140-151. Boersema, P. J., S. Mohammed, et al. (2009). "Phosphopeptide fragmentation and analysis by mass spectrometry." J Mass Spectrom 44(6): 861-878. Bradford, M. M. (1976). "A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding." Anal Biochem 72: 248-254. Busk, P. K. and M. Pages (1998). "Regulation of abscisic acid-induced transcription." Plant Mol Biol 37(3): 425-435. Caruso, G., C. Cavaliere, et al. (2008). "Identification of changes in Triticum durum L. leaf proteome in response to salt stress by two-dimensional electrophoresis and MALDI-TOF mass spectrometry." Anal Bioanal Chem 391(1): 381-390. Cheng, W. H., A. Endo, et al. (2002). "A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions." Plant Cell 14(11): 2723-2743. Chiang, P. K., R. K. Gordon, et al. (1996). "S-Adenosylmethionine and methylation." FASEB J 10(4): 471-480. Cleveland, D. W., S. G. Fischer, et al. (1977). "Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis." J Biol Chem 252(3): 1102-1106. Conti, L., G. Price, et al. (2008). "Small ubiquitin-like modifier proteases OVERLY TOLERANT TO SALT1 and -2 regulate salt stress responses in Arabidopsis." Plant Cell 20(10): 2894-2908. Coon, J. J., B. Ueberheide, et al. (2005). "Protein identification using sequential ion/ion reactions and tandem mass spectrometry." Proceedings of the National Academy of Sciences of the United States of America 102(27): 9463-9468. Cramer, G. R., A. Ergul, et al. (2007). "Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles." Funct Integr Genomics 7(2): 111-134. Cruz de Carvalho, M. H., A. d''Arcy-Lameta, et al. (2001). "Aspartic protease in leaves of common bean (Phaseolus vulgaris L.) and cowpea (Vigna unguiculata L. Walp): enzymatic activity, gene expression and relation to drought susceptibility." FEBS Lett 492(3): 242-246. Deng, X., J. Phillips, et al. (2002). "Characterization of five novel dehydration-responsive homeodomain leucine zipper genes from the resurrection plant Craterostigma plantagineum." Plant Mol Biol 49(6): 601-610. Denison, C., D. S. Kirkpatrick, et al. (2005). "Proteomic insights into ubiquitin and ubiquitin-like proteins." Curr Opin Chem Biol 9(1): 69-75. Fenn, J. B., M. Mann, et al. (1989). "Electrospray ionization for mass spectrometry of large biomolecules." Science 246(4926): 64-71. Ficarro, S. B., M. L. McCleland, et al. (2002). "Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae." Nat Biotechnol 20(3): 301-305. Fuglsang, A. T., S. Visconti, et al. (1999). "Binding of 14-3-3 protein to the plasma membrane H(+)-ATPase AHA2 involves the three C-terminal residues Tyr(946)-Thr-Val and requires phosphorylation of Thr(947)." J Biol Chem 274(51): 36774-36780. Giraudat, J., F. Parcy, et al. (1994). "Current advances in abscisic acid action and signalling." Plant Mol Biol 26(5): 1557-1577. Gnanasekar, M. and K. Ramaswamy (2007). "Translationally controlled tumor protein of Brugia malayi functions as an antioxidant protein." Parasitol Res 101(6): 1533-1540. Grabbe, C. and I. Dikic (2009). "Functional roles of ubiquitin-like domain (ULD) and ubiquitin-binding domain (UBD) containing proteins." Chem Rev 109(4): 1481-1494. Gronborg, M., T. Z. Kristiansen, et al. (2002). "A mass spectrometry-based proteomic approach for identification of serine/threonine-phosphorylated proteins by enrichment with phospho-specific antibodies: identification of a novel protein, Frigg, as a protein kinase A substrate." Mol Cell Proteomics 1(7): 517-527. Haglund, K. and I. Dikic (2005). "Ubiquitylation and cell signaling." EMBO J 24(19): 3353-3359. Hamilton, C. A., A. G. Good, et al. (2001). "Induction of vacuolar ATPase and mitochondrial ATP synthase by aluminum in an aluminum-resistant cultivar of wheat." Plant Physiol 125(4): 2068-2077. Hasegawa, P. M., R. A. Bressan, et al. (2000). "Plant Cellular and Molecular Responses to High Salinity." Annu Rev Plant Physiol Plant Mol Biol 51: 463-499. He, H. and J. Li (2008). "Proteomic analysis of phosphoproteins regulated by abscisic acid in rice leaves." Biochem Biophys Res Commun 371(4): 883-888. Henzel, W. J., T. M. Billeci, et al. (1993). "Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases." Proc Natl Acad Sci U S A 90(11): 5011-5015. Hung KT, K. C. (2004). "Hydrogen peroxide is necessary for abscisic acid-induced senescence of rice leaves." Plant Physiol 161: 1347-1357. Hunter, T. (2000). "Signaling--2000 and beyond." Cell 100(1): 113-127. Karas, M. and F. Hillenkamp (1988). "Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons." Anal Chem 60(20): 2299-2301. Kawasaki, S., C. Borchert, et al. (2001). "Gene expression profiles during the initial phase of salt stress in rice." Plant Cell 13(4): 889-905. Kim, D. W., R. Rakwal, et al. (2005). "A hydroponic rice seedling culture model system for investigating proteome of salt stress in rice leaf." Electrophoresis 26(23): 4521-4539. Kreps, J. A., Y. Wu, et al. (2002). "Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress." Plant Physiol 130(4): 2129-2141. Kunstmann, B. and H. D. Osiewacz (2008). "Over-expression of an S-adenosylmethionine-dependent methyltransferase leads to an extended lifespan of Podospora anserina without impairments in vital functions." Aging Cell 7(5): 651-662. Lander, E. S., L. M. Linton, et al. (2001). "Initial sequencing and analysis of the human genome." Nature 409(6822): 860-921. Lawlor, D. W. and W. Tezara (2009). "Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: a critical evaluation of mechanisms and integration of processes." Ann Bot 103(4): 561-579. Lee, J., J. Nam, et al. (2007). "Salicylic acid-mediated innate immunity in Arabidopsis is regulated by SIZ1 SUMO E3 ligase." Plant J 49(1): 79-90. Leung, J. and J. Giraudat (1998). "Abscisic Acid Signal Transduction." Annu Rev Plant Physiol Plant Mol Biol 49: 199-222. Lin, H., Y. Yang, et al. (2009). "Phosphorylation of SOS3-LIKE CALCIUM BINDING PROTEIN8 by SOS2 protein kinase stabilizes their protein complex and regulates salt tolerance in Arabidopsis." Plant Cell 21(5): 1607-1619. Lohrig, K., B. Muller, et al. (2009). "Phosphorylation site mapping of soluble proteins: bioinformatical filtering reveals potential plastidic phosphoproteins in Arabidopsis thaliana." Planta 229(5): 1123-1134. Lois, L. M., C. D. Lima, et al. (2003). "Small ubiquitin-like modifier modulates abscisic acid signaling in Arabidopsis." Plant Cell 15(6): 1347-1359. Lowe, J., D. Stock, et al. (1995). "Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution." Science 268(5210): 533-539. Mahajan, S. and N. Tuteja (2005). "Cold, salinity and drought stresses: an overview." Arch Biochem Biophys 444(2): 139-158. Manzano, C., Z. Abraham, et al. (2008). "Identification of ubiquitinated proteins in Arabidopsis." Plant Mol Biol 68(1-2): 145-158. Maor, R., A. Jones, et al. (2007). "Multidimensional protein identification technology (MudPIT) analysis of ubiquitinated proteins in plants." Mol Cell Proteomics 6(4): 601-610. McLachlin, D. T. and B. T. Chait (2001). "Analysis of phosphorylated proteins and peptides by mass spectrometry." Curr Opin Chem Biol 5(5): 591-602. Miura, K., J. B. Jin, et al. (2007). "SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis." Plant Cell 19(4): 1403-1414. Miura, K., A. Rus, et al. (2005). "The Arabidopsis SUMO E3 ligase SIZ1 controls phosphate deficiency responses." Proc Natl Acad Sci U S A 102(21): 7760-7765. Molina, H., D. M. Horn, et al. (2007). "Global proteomic profiling of phosphopeptides using electron transfer dissociation tandem mass spectrometry." Proc Natl Acad Sci U S A 104(7): 2199-2204. Murtas, G., P. H. Reeves, et al. (2003). "A nuclear protease required for flowering-time regulation in Arabidopsis reduces the abundance of SMALL UBIQUITIN-RELATED MODIFIER conjugates." Plant Cell 15(10): 2308-2319. Nandi, D., P. Tahiliani, et al. (2006). "The ubiquitin-proteasome system." J Biosci 31(1): 137-155. Neet, K. and T. Hunter (1996). "Vertebrate non-receptor protein-tyrosine kinase families." Genes Cells 1(2): 147-169. Niu, G. H. and D. S. Rodriguez (2006). "Relative salt tolerance of selected herbaceous perennials and groundcovers." Scientia Horticulturae 110(4): 352-358. Noji, M., M. Saito, et al. (2001). "Cysteine synthase overexpression in tobacco confers tolerance to sulfur-containing environmental pollutants." Plant Physiol 126(3): 973-980. Palmgren, M. G., M. Sommarin, et al. (1991). "Identification of an autoinhibitory domain in the C-terminal region of the plant plasma membrane H(+)-ATPase." J Biol Chem 266(30): 20470-20475. Pandey, A., A. V. Podtelejnikov, et al. (2000). "Analysis of receptor signaling pathways by mass spectrometry: identification of vav-2 as a substrate of the epidermal and platelet-derived growth factor receptors." Proc Natl Acad Sci U S A 97(1): 179-184. Peng, J., D. Schwartz, et al. (2003). "A proteomics approach to understanding protein ubiquitination." Nat Biotechnol 21(8): 921-926. Perales, L., L. Penarrubia, et al. (2008). "Induction of a polyubiquitin gene promoter by dehydration stresses in transformed rice cells." J Plant Physiol 165(2): 159-171. Pinheiro, C., M. M. Chaves, et al. (2001). "Alterations in carbon and nitrogen metabolism induced by water deficit in the stems and leaves of Lupinus albus L." J Exp Bot 52(358): 1063-1070. Pinkse, M. W., S. Mohammed, et al. (2008). "Highly robust, automated, and sensitive online TiO2-based phosphoproteomics applied to study endogenous phosphorylation in Drosophila melanogaster." J Proteome Res 7(2): 687-697. Purushotham, K. R., T. Zelles, et al. (1991). "Role of protein phosphorylation and inositol phospholipid turnover in rat parotid gland proliferation." Mol Cell Biochem 102(1): 19-33. Riechmann, J. L., J. Heard, et al. (2000). "Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes." Science 290(5499): 2105-2110. Rizhsky, L., H. Liang, et al. (2004). "When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress." Plant Physiol 134(4): 1683-1696. Rodriguez-Milla, M. A. and J. Salinas (2009). "Prefoldins 3 and 5 play an essential role in Arabidopsis tolerance to salt stress." Mol Plant 2(3): 526-534. Roepstorff, P. and J. Fohlman (1984). "Proposal for a common nomenclature for sequence ions in mass spectra of peptides." Biomed Mass Spectrom 11(11): 601. Saracco, S. A., M. Hansson, et al. (2009). "Tandem affinity purification and mass spectrometric analysis of ubiquitylated proteins in Arabidopsis." Plant J 59(2): 344-358. Schroeder, J. I., J. M. Kwak, et al. (2001). "Guard cell abscisic acid signalling and engineering drought hardiness in plants." Nature 410(6826): 327-330. Seki, M., M. Narusaka, et al. (2002). "Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray." Plant J 31(3): 279-292. Shinozaki, K., K. Yamaguchi-Shinozaki, et al. (2003). "Regulatory network of gene expression in the drought and cold stress responses." Curr Opin Plant Biol 6(5): 410-417. Sobhanian, H., R. Razavizadeh, et al. (2010). "Proteome analysis of soybean leaves, hypocotyls and roots under salt stress." Proteome Sci 8: 19. Tesfaye, M., S. J. Temple, et al. (2001). "Overexpression of malate dehydrogenase in transgenic alfalfa enhances organic acid synthesis and confers tolerance to aluminum." Plant Physiol 127(4): 1836-1844. Trouverie, J., C. Thevenot, et al. (2003). "The role of abscisic acid in the response of a specific vacuolar invertase to water stress in the adult maize leaf." J Exp Bot 54(390): 2177-2186. Venter, J. C., M. D. Adams, et al. (2001). "The sequence of the human genome." Science 291(5507): 1304-1351. Vogl, T., J. Roth, et al. (1999). "Calcium-induced noncovalently linked tetramers of MRP8 and MRP14 detected by ultraviolet matrix-assisted laser desorption/ionization mass spectrometry." J Am Soc Mass Spectrom 10(11): 1124-1130. Wang, D. and R. J. Cotter (2005). "Approach for determining protein ubiquitination sites by MALDI-TOF mass spectrometry." Anal Chem 77(5): 1458-1466. Warren, M. R., C. E. Parker, et al. (2005). "Electrospray ionization tandem mass spectrometry of model peptides reveals diagnostic fragment ions for protein ubiquitination." Rapid Commun Mass Spectrom 19(4): 429-437. Waskiewicz, A. J. and J. A. Cooper (1995). "Mitogen and stress response pathways: MAP kinase cascades and phosphatase regulation in mammals and yeast." Curr Opin Cell Biol 7(6): 798-805. Welchman, R. L., C. Gordon, et al. (2005). "Ubiquitin and ubiquitin-like proteins as multifunctional signals." Nat Rev Mol Cell Biol 6(8): 599-609. Wettenhall, R. E., R. H. Aebersold, et al. (1991). "Solid-phase sequencing of 32P-labeled phosphopeptides at picomole and subpicomole levels." Methods Enzymol 201: 186-199. Yan, S., Z. Tang, et al. (2005). "Proteomic analysis of salt stress-responsive proteins in rice root." Proteomics 5(1): 235-244. Yang, C. P., Y. C. Wang, et al. (2004). "[Study on gene expression of Tamarix under NaHCO3 stress using SSH technology]." Yi Chuan Xue Bao 31(9): 926-933. Yang, Q., Y. Wang, et al. (2007). "Identification of aluminum-responsive proteins in rice roots by a proteomic approach: cysteine synthase as a key player in Al response." Proteomics 7(5): 737-749. Yokoi S, B. R., Hasegawa PM. (2002). "Salt stress tolerance of plants." JIRCAS Working Report.: 25-33. Yoo, C. Y., K. Miura, et al. (2006). "SIZ1 small ubiquitin-like modifier E3 ligase facilitates basal thermotolerance in Arabidopsis independent of salicylic acid." Plant Physiol 142(4): 1548-1558. Zhang, L., L. H. Tian, et al. (2009). "Identification of an apoplastic protein involved in the initial phase of salt stress response in rice root by two-dimensional electrophoresis." Plant Physiol 149(2): 916-928. Zhang, Y., C. Yang, et al. (2007). "SDIR1 is a RING finger E3 ligase that positively regulates stress-responsive abscisic acid signaling in Arabidopsis." Plant Cell 19(6): 1912-1929. Zhou, S., R. Sauve, et al. (2009). "Proteome changes induced by aluminium stress in tomato roots." J Exp Bot 60(6): 1849-1857. Zhu, J. K. (2003). "Regulation of ion homeostasis under salt stress." Curr Opin Plant Biol 6(5): 441-445. Zolnierowicz, S. and M. Bollen (2000). "Protein phosphorylation and protein phosphatases. De Panne, Belgium, September 19-24, 1999." EMBO J 19(4): 483-488.
摘要: 
目前全世界約有高於三分之一的人口以水稻為主食,而水稻的生長與產量會受到主要的非生物性逆境-鹽害逆境所限制。預估至2050年日趨嚴重的土壤鹽漬化情形將使得世界上的有效耕地僅剩現今的百分之五十。因此,藉由深入了解作物於鹽逆境時之耐鹽反應以發展具耐鹽特性之作物是非常重要的。
即使過去在植物耐鹽機制上已有豐碩轉錄體相關研究成果,但有鑑於植物在感應鹽分逆境時複雜的分子調節機制,此一課題仍有很大的空間需持續地被研究著。蛋白質體分析技術於近年來蓬勃發展,此項技術可以窺視基因的終產物-蛋白質的質和量,甚至是蛋白質轉譯後修飾。本實驗利用蛋白質體學與質譜技術,欲探討水稻幼苗於初期鹽害逆境下生理以及分子反應機制。選用的水稻材料為TNG67 以及經由疊氮化鈉誘變而成的耐鹽水稻 SM75 與感鹽水稻 SA0604,而具有不同耐鹽程度的植物往往是拿來研究鹽逆境反應機制的最佳材料。生長19天的三種水稻幼苗(三葉齡)以250 mM 之氯化鈉處理0.5小時,再將萃取的葉部及根部蛋白質以二維膠體電泳分析,並以比對軟體分析於初期鹽逆境下是否具有表現量變化之蛋白質點,經由胰蛋白酶水解後再以 LC-MS/MS 分析,並搭配蛋白質資料庫比對鑑定具表現量差異之蛋白質身份。
實驗結果發現,TNG67 的葉部蛋白體於初期鹽害逆境下共有31個蛋白質表現差異點,而 SM75 及 SA0604 分別有33及16個蛋白質表現差異點。其鑑定的結果中,有若干蛋白質在三種不同耐鹽程度的水稻植株中,有不同的消長現象,此些蛋白質可能決定了水稻生理上不同耐鹽程度,包含了 Cysteine synthase、Fructokinase 2、3-O-methyltransferase 1、ATP synthase 等等。此外,有鑑於轉譯後修飾如泛素修飾及磷酸化修飾蛋白被多篇研究證實會參與植物耐鹽分子機制,我們以質譜儀技術找出數個有被修飾的蛋白質。希望此研究成果有利於未來植物生理之研究,甚至可以提供基因改造策略以增進水稻於鹽害逆境下耐受性。

Rice (Oryza sativa L.) serves as a staple food source for more than one-third of the world’s population. Rice growth and productivity are limited by salt stress which is a major abiotic stress in agriculture worldwide. Increased salinization of arable land is predicted with 50% land loss by the year 2050; hence it is important to understand plant tolerance to salinity that is fundamental to develop stress tolerant crops.
Although this topic has long been studied by transcriptome-based studies, it is still required for dissecting due to the complicated regulatory mechanism of salt adaptation in plant. Recently the proteomics have been developed more widespread, the techniques can offer insights into the quantity and quality of the final gene products even the post-translaitonal modifications. In this study, we aim to elucidate the physiological and molecular mechanism response to initial salt stress in rice by using proteomics method. The chosen rice strains TNG67, salt-tolerant mutant SM75 and salt-sensitive strain SA0604 derived from TNG67 by sodium azide (NaN3) mutagenesis were valuable for this research of plant salt-responsive mechanism. 19 days-old rice seedlings of three strains were treatrd with 250 mM NaCl for 0.5 h. Total proteins of leaves and roots were extracted for comparative proteomics analysis via 2D electrophoresis and LC-MS/MS analysis. The result showed 31 differentially expressed proteins spots of leaf proteome in TNG67, 33 in SM75 and 16 in SA0604. Several identified proteins like Cysteine synthase、Fructokinase 2、3-O-methyltransferase 1、ATP synthase may be potential for gene improved strategy of salt tolerance. Further, the post-translational modification such as phosphorylation and ubiquitination in proteins which have been discussed involved in plant salt adaptation were also analyzed in our research. These identified proteins may be helpful in elucidating the molecular basis of salt tolerance in plant.
URI: http://hdl.handle.net/11455/22133
其他識別: U0005-1808201017233500
Appears in Collections:分子生物學研究所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.