Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/22138
標題: 水稻油體膜蛋白和核醣體蛋白p40之功能研究
Functional analysis of rice oleosin and ribosomal protein p40
作者: 吳妤憶
Wu, Yu-Yi
關鍵字: rice;水稻;RNA interference;oleosin;ribosomal protein p40;transgenic plant;RNA干擾;油體膜蛋白;核醣體蛋白p40;轉殖植物
出版社: 分子生物學研究所
引用: 源起 吳妤憶 (2003) 利用RNA干擾法探討水稻穀粒發育相關基因之功能,中興大學分子生物學研究所碩士論文 Demianova, M., Formosa, T.G. and Ellis, S.R. (1996) Yeast proteins related to the p40/laminin receptor precursor are essential components of the 40 S ribosomal subunit. J Biol Chem 271: 11383-11391. Siloto, R.M., Findlay, K., Lopez-Villalobos, A., Yeung, E.C., Nykiforuk, C.L. and Moloney, M.M. (2006) The accumulation of oleosins determines the size of seed oilbodies in Arabidopsis. Plant Cell 18: 1961-1974. Susantad, T. and Smith, D.R. (2008) siRNA-mediated silencing of the 37/67-kDa high affinity laminin receptor in Hep3B cells induces apoptosis. Cell Mol Biol Lett 13: 452-464. Tai, S.S., Chen, M.C., Peng, C.C. and Tzen, J.T. (2002) Gene family of oleosin isoforms and their structural stabilization in sesame seed oil bodies. Biosci Biotechnol Biochem 66: 2146-2153. Tzen, J.T., Chuang, R.L., Chen, J.C. and Wu, L.S. (1998) Coexistence of both oleosin isoforms on the surface of seed oil bodies and their individual stabilization to the organelles. J Biochem (Tokyo) 123: 318-323. Tzen, J.T., Lai, Y.K., Chan, K.L. and Huang, A.H. (1990) Oleosin Isoforms of High and Low Molecular Weights Are Present in the Oil Bodies of Diverse Seed Species. Plant Physiol 94: 1282-1289. 第一章 吳妤憶 (2003) 利用RNA干擾法探討水稻穀粒發育相關基因之功能,中興大學分子生物學研究所碩士論文 陳鵬文 (1987) 水稻胚發育時其特有表現基因知分離與分析,中興大學植物學研究所博士論文 Abdelgany, A., Wood, M. and Beeson, D. (2003) Allele-specific silencing of a pathogenic mutant acetylcholine receptor subunit by RNA interference. Hum Mol Genet 12: 2637-2644. Angell, S.M. and Baulcombe, D.C. (1997) Consistent gene silencing in transgenic plants expressing a replicating potato virus X RNA. Embo J 16: 3675-3684. Caplen, N.J., Parrish, S., Imani, F., Fire, A. and Morgan, R.A. (2001) Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proc Natl Acad Sci U S A 98: 9742-9747. Caudy, A.A., Ketting, R.F., Hammond, S.M., Denli, A.M., Bathoorn, A.M., Tops, B.B., Silva, J.M., Myers, M.M., Hannon, G.J. and Plasterk, R.H. (2003) A micrococcal nuclease homologue in RNAi effector complexes. Nature 425: 411-414. Chen, S., Hofius, D., Sonnewald, U. and Bornke, F. (2003) Temporal and spatial control of gene silencing in transgenic plants by inducible expression of double-stranded RNA. Plant J 36: 731-740. Cullen, B.R. (2002) RNA interference: antiviral defense and genetic tool. Nat Immunol 3: 597-599. Doench, J.G., Petersen, C.P. and Sharp, P.A. (2003) siRNAs can function as miRNAs. Genes Dev 17: 438-442. Elbashir, S.M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K. and Tuschl, T. (2001a) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411: 494-498. Elbashir, S.M., Lendeckel, W. and Tuschl, T. (2001b) RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 15: 188-200. Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E. and Mello, C.C. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391: 806-811. Fraser, A.G., Kamath, R.S., Zipperlen, P., Martinez-Campos, M., Sohrmann, M. and Ahringer, J. (2000) Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 408: 325-330. Gonczy, P., Echeverri, C., Oegema, K., Coulson, A., Jones, S.J., et al. (2000) Functional genomic analysis of cell division in C. elegans using RNAi of genes on chromosome III. Nature 408: 331-336. Grishok, A., Pasquinelli, A.E., Conte, D., Li, N., Parrish, S., Ha, I., Baillie, D.L., Fire, A., Ruvkun, G. and Mello, C.C. (2001) Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106: 23-34. Guo, H.S., Fei, J.F., Xie, Q. and Chua, N.H. (2003) A chemical-regulated inducible RNAi system in plants. Plant J 34: 383-392. Guo, S. and Kemphues, K.J. (1995) par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell 81: 611-620. Helliwell, C. and Waterhouse, P. (2003) Constructs and methods for high-throughput gene silencing in plants. Methods 30: 289-295. Hutvagner, G. and Zamore, P.D. (2002a) A microRNA in a multiple-turnover RNAi enzyme complex. Science 297: 2056-2060. Hutvagner, G. and Zamore, P.D. (2002b) RNAi: nature abhors a double-strand. Curr Opin Genet Dev 12: 225-232. Karpala, A.J., Doran, T.J. and Bean, A.G. (2005) Immune responses to dsRNA: implications for gene silencing technologies. Immunol Cell Biol 83: 211-216. Kasschau, K.D. and Carrington, J.C. (1998) A counterdefensive strategy of plant viruses: suppression of posttranscriptional gene silencing. Cell 95: 461-470. Kiger, A.A., Baum, B., Jones, S., Jones, M.R., Coulson, A., Echeverri, C. and Perrimon, N. (2003) A functional genomic analysis of cell morphology using RNA interference. J Biol 2: 27. Klahre, U., Crete, P., Leuenberger, S.A., Iglesias, V.A. and Meins, F., Jr. (2002) High molecular weight RNAs and small interfering RNAs induce systemic posttranscriptional gene silencing in plants. Proc Natl Acad Sci U S A 99: 11981-11986. Li, H., Li, W.X. and Ding, S.W. (2002) Induction and suppression of RNA silencing by an animal virus. Science 296: 1319-1321. Li, W.X. and Ding, S.W. (2001) Viral suppressors of RNA silencing. Curr Opin Biotechnol 12: 150-154. Lipardi, C., Wei, Q. and Paterson, B.M. (2001) RNAi as random degradative PCR: siRNA primers convert mRNA into dsRNAs that are degraded to generate new siRNAs. Cell 107: 297-307. Mourrain, P., Beclin, C., Elmayan, T., Feuerbach, F., Godon, C., et al. (2000) Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance. Cell 101: 533-542. Mousses, S., Caplen, N.J., Cornelison, R., Weaver, D., Basik, M., et al. (2003) RNAi microarray analysis in cultured mammalian cells. Genome Res 13: 2341-2347. Napoli, C., Lemieux, C. and Jorgensen, R. (1990) Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in trans. Plant Cell 2: 279-289. Ratcliff, F., Martin-Hernandez, A.M. and Baulcombe, D.C. (2001) Technical Advance. Tobacco rattle virus as a vector for analysis of gene function by silencing. Plant J 25: 237-245. Ruiz, M.T., Voinnet, O. and Baulcombe, D.C. (1998) Initiation and maintenance of virus-induced gene silencing. Plant Cell 10: 937-946. Schweizer, P., Pokorny, J., Schulze-Lefert, P. and Dudler, R. (2000) Technical advance. Double-stranded RNA interferes with gene function at the single-cell level in cereals. Plant J 24: 895-903. Smith, N.A., Singh, S.P., Wang, M.B., Stoutjesdijk, P.A., Green, A.G. and Waterhouse, P.M. (2000) Total silencing by intron-spliced hairpin RNAs. Nature 407: 319-320. Tabara, H., Grishok, A. and Mello, C.C. (1998) RNAi in C. elegans: soaking in the genome sequence. Science 282: 430-431. Tang, G., Reinhart, B.J., Bartel, D.P. and Zamore, P.D. (2003) A biochemical framework for RNA silencing in plants. Genes Dev 17: 49-63. Timmons, L. and Fire, A. (1998) Specific interference by ingested dsRNA. Nature 395: 854. Wesley, S.V., Helliwell, C.A., Smith, N.A., Wang, M.B., Rouse, D.T., et al. (2001) Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J 27: 581-590. Zeng, Y., Yi, R. and Cullen, B.R. (2003) MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc Natl Acad Sci U S A 100: 9779-9784. Zentella, R., Yamauchi, D. and Ho, T.H. (2002) Molecular dissection of the gibberellin/abscisic acid signaling pathways by transiently expressed RNA interference in barley aleurone cells. Plant Cell 14: 2289-2301. 第二章 吳妤憶 (2003) 利用RNA干擾法探討水稻穀粒發育相關基因之功能,中興大學分子生物學研究所碩士論文 Chuang, R.L., Chen, J.C., Chu, J. and Tzen, J.T. (1996) Characterization of seed oil bodies and their surface oleosin isoforms from rice embryos. J Biochem 120: 74-81. Davis, S.C., Tzagoloff, A. and Ellis, S.R. (1992) Characterization of a yeast mitochondrial ribosomal protein structurally related to the mammalian 68-kDa high affinity laminin receptor. J Biol Chem 267: 5508-5514. Frandsen, G.I., Mundy, J. and Tzen, J.T. (2001) Oil bodies and their associated proteins, oleosin and caleosin. Physiol Plant 112: 301-307. Gemmrich, A.R. (1981) Ultrastructural and enzymatic studies on the development of microbodies in germinating spores of the fern Anemia phyllitidis. Z. Pflanzenphysiol. 102: 69-80. Hatzopoulos, P., Franz, G., Choy, L. and Sung, R.Z. (1990) Interaction of nuclear factors with upstream sequences of a lipid body membrane protein gene from carrot. Plant Cell 2: 457-467. Hsieh, K. and Huang, A.H. (2004) Endoplasmic reticulum, oleosins, and oils in seeds and tapetum cells. Plant Physiol 136: 3427-3434. Huang, A.H. (1996) Oleosins and oil bodies in seeds and other organs. Plant Physiol 110: 1055-1061. Huang, A.H.C. (1992) Oil bodies and oleosins in seeds. Annu Rev Plant Physiol Plant Mol Biol 43: 177-200 Huang, C.Y., Chung, C.I., Lin, Y.C., Hsing, Y.I. and Huang, A.H. (2009) Oil bodies and oleosins in Physcomitrella possess characteristics representative of early trends in evolution. Plant Physiol 150: 1192-1203. Kim, H.U., Hsieh, K., Ratnayake, C. and Huang, A.H. (2002) A novel group of oleosins is present inside the pollen of Arabidopsis. J Biol Chem 277: 22677-22684. Kusaba, M., Miyahara, K., Iida, S., Fukuoka, H., Takano, T., Sassa, H., Nishimura, M. and Nishio, T. (2003) Low glutelin content1: a dominant mutation that suppresses the glutelin multigene family via RNA silencing in rice. Plant Cell 15: 1455-1467. Lacey D.J. and Hills M.J. (1996) Heterogeneity of the endoplasmic reticulum with respect to lipid synthesis in developing seeds of Brassica napus L. Planta 199: 545-551 Lacey, D.J., Wellner, N., Beaudoin, F., Napier, J.A. and Shewry, P.R. (1998) Secondary structure of oleosins in oil bodies isolated from seeds of safflower (Carthamus tinctorius L.) and sunflower (Helianthus annuus L.). Biochem J 334 ( Pt 2): 469-477. Lee, K., Bih, F.Y., Learn, G.H., Ting, J.T., Sellers, C. and Huang, A.H. (1994) Oleosins in the gametophytes of Pinus and Brassica and their phylogenetic relationship with those in the sporophytes of various species. Planta 193: 461-469. Li, M., Smith, L.J., Clark, D.C., Wilson, R. and Murphy, D.J. (1992) Secondary structures of a new class of lipid body proteins from oilseeds. J Biol Chem 267: 8245-8253. Lin, L.J. and Tzen, J.T. (2004) Two distinct steroleosins are present in seed oil bodies. Plant Physiol Biochem 42: 601-608. Mettler, I.J. (1987) A simple and rapid method for minipreparation of DNA from tissue cultured plant cells. Plant Mol Biol Rep 5: 346-349. Murphy, D.J. and Vance, J. (1999) Mechanisms of lipid-body formation. Trends Biochem Sci 24: 109-115. Napier, J.A., Stobart, A.K. and Shewry, P.R. (1996) The structure and biogenesis of plant oil bodies: the role of the ER membrane and the oleosin class of proteins. Plant Mol Biol 31: 945-956. Peng, C.C., Lin, I.P., Lin, C.K. and Tzen, J.T. (2003) Size and stability of reconstituted sesame oil bodies. Biotechnol Prog 19: 1623-1626. Plant, A.L., van Rooijen, G.J., Anderson, C.P. and Moloney, M.M. (1994) Regulation of an Arabidopsis oleosin gene promoter in transgenic Brassica napus. Plant Mol Biol 25: 193-205. Ross, J.H.E., Sanchez, J., Millan, F. and Murphy D.J. (1993) Differential presence of oleosins in oleogenic seed and mesocarp tissues in olive (Olea europaea) and avocado (Persea americana). Plant Sci 93: 203-210 Sarmiento, C., Ross, J.H., Herman, E. and Murphy, D.J. (1997) Expression and subcellular targeting of a soybean oleosin in transgenic rapeseed. Implications for the mechanism of oil-body formation in seeds. Plant J 11: 783-796. Shimada, T.L., Shimada, T., Takahashi, H., Fukao, Y. and Hara-Nishimura, I. (2008) A novel role for oleosins in freezing tolerance of oilseeds in Arabidopsis thaliana. Plant J 55: 798-809. Siloto, R.M., Findlay, K., Lopez-Villalobos, A., Yeung, E.C., Nykiforuk, C.L. and Moloney, M.M. (2006) The accumulation of oleosins determines the size of seed oilbodies in Arabidopsis. Plant Cell 18: 1961-1974. Tai, S.S., Chen, M.C., Peng, C.C. and Tzen, J.T. (2002) Gene family of oleosin isoforms and their structural stabilization in sesame seed oil bodies. Biosci Biotechnol Biochem 66: 2146-2153. Thompson, J.E., Froese, C.D., Madey, E., Smith, M.D. and Hong, Y. (1998) Lipid metabolism during plant senescence. Prog Lipid Res 37: 119-141. Ting, J.T., Lee, K., Ratnayake, C., Platt, K.A., Balsamo, R.A. and Huang, A.H. (1996) Oleosin genes in maize kernels having diverse oil contents are constitutively expressed independent of oil contents. Size and shape of intracellular oil bodies are determined by the oleosins/oils ratio. Planta 199: 158-165. Tzen, J., Cao, Y., Laurent, P., Ratnayake, C. and Huang, A. (1993) Lipids, Proteins, and Structure of Seed Oil Bodies from Diverse Species. Plant Physiol 101: 267-276. Tzen, J.T., Chuang, R.L., Chen, J.C. and Wu, L.S. (1998) Coexistence of both oleosin isoforms on the surface of seed oil bodies and their individual stabilization to the organelles. J Biochem (Tokyo) 123: 318-323. Tzen, J.T. and Huang, A.H. (1992) Surface structure and properties of plant seed oil bodies. J Cell Biol 117: 327-335. Tzen, J.T., Lai, Y.K., Chan, K.L. and Huang, A.H. (1990) Oleosin Isoforms of High and Low Molecular Weights Are Present in the Oil Bodies of Diverse Seed Species. Plant Physiol 94: 1282-1289. Tzen, J.T., Lie, G.C. and Huang, A.H. (1992) Characterization of the charged components and their topology on the surface of plant seed oil bodies. J Biol Chem 267: 15626-15634. Tzen, J.T., Peng, C.C., Cheng, D.J., Chen, E.C. and Chiu, J.M. (1997) A new method for seed oil body purification and examination of oil body integrity following germination. J Biochem 121: 762-768. Vance, V.B. and Huang, A.H. (1987) The major protein from lipid bodies of maize. Characterization and structure based on cDNA cloning. J Biol Chem 262: 11275-11279. Wesley, S.V., Helliwell, C.A., Smith, N.A., Wang, M.B., Rouse, D.T., et al. (2001) Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J 27: 581-590. Wu, L.S., Wang, L.D., Chen, P.W., Chen, L.J. and Tzen, J.T. (1998) Genomic cloning of 18 kDa oleosin and detection of triacylglycerols and oleosin isoforms in maturing rice and postgerminative seedlings. J Biochem 123: 386-391. Yatsu, L.Y. and Jacks, T.J. (1972) Spherosome membranes: half unit-membranes. Plant Physiol 49: 937-943. 第三章 李佳鳳 (2000) 水稻一似核醣體結合蛋白基因Ose725之選殖與分析,中興大學分子生物學研究所碩士論文 吳妤憶 (2003) 利用RNA干擾法探討水稻穀粒發育相關基因之功能,中興大學分子生物學研究所碩士論文 陳鵬文 (1987) 水稻胚發育時其特有表現基因知分離與分析,中興大學植物學研究所博士論文 Hoshikawa, K. (1989) The growing rice plant: An anatomical monograph Sambrook, J. and Russell, D.W. (2001) Molecular Cloning: A Laboratory Manual (Third edition) Auth, D. and Brawerman, G. (1992) A 33-kDa polypeptide with homology to the laminin receptor: component of translation machinery. Proc Natl Acad Sci U S A 89: 4368-4372. Axelos, M., Bardet, C. and Lescure, B. (1993) An Arabidopsis cDNA encoding a 33-kilodalton laminin receptor homolog. Plant Physiol 103: 299-300. Barakat, A., Szick-Miranda, K., Chang, I.F., Guyot, R., Blanc, G., Cooke, R., Delseny, M. and Bailey-Serres, J. (2001) The organization of cytoplasmic ribosomal protein genes in the Arabidopsis genome. Plant Physiol 127: 398-415. Combe, J.P., Petracek, M.E., van Eldik, G., Meulewaeter, F. and Twell, D. (2005) Translation initiation factors eIF4E and eIFiso4E are required for polysome formation and regulate plant growth in tobacco. Plant Mol Biol 57: 749-760. Degenhardt, R.F. and Bonham-Smith, P.C. (2008a) Arabidopsis ribosomal proteins RPL23aA and RPL23aB are differentially targeted to the nucleolus and are desperately required for normal development. Plant Physiol 147: 128-142. Degenhardt, R.F. and Bonham-Smith, P.C. (2008b) Transcript profiling demonstrates absence of dosage compensation in Arabidopsis following loss of a single RPL23a paralog. Planta 228: 627-640. Demianova, M., Formosa, T.G. and Ellis, S.R. (1996) Yeast proteins related to the p40/laminin receptor precursor are essential components of the 40 S ribosomal subunit. J Biol Chem 271: 11383-11391. Ford, C.L., Randal-Whitis, L. and Ellis, S.R. (1999) Yeast proteins related to the p40/laminin receptor precursor are required for 20S ribosomal RNA processing and the maturation of 40S ribosomal subunits. Cancer Res 59: 704-710. Fujikura, U., Horiguchi, G., Ponce, M.R., Micol, J.L. and Tsukaya, H. (2009) Coordination of cell proliferation and cell expansion mediated by ribosome-related processes in the leaves of Arabidopsis thaliana. Plant J 59: 499-508. Garcia-Hernandez, M., Davies, E., Baskin, T.I. and Staswick, P.E. (1996) Association of Plant p40 Protein with Ribosomes Is Enhanced When Polyribosomes Form during Periods of Active Tissue Growth. Plant Physiol 111: 559-568. Garcia-Hernandez, M., Davies, E. and Staswick, P.E. (1994) Arabidopsis p40 homologue. A novel acidic protein associated with the 40 S subunit of ribosomes. J Biol Chem 269: 20744-20749. Imai, A., Komura, M., Kawano, E., Kuwashiro, Y. and Takahashi, T. (2008) A semi-dominant mutation in the ribosomal protein L10 gene suppresses the dwarf phenotype of the acl5 mutant in Arabidopsis thaliana. Plant J 56: 881-890. Ito, T., Kim, G.T. and Shinozaki, K. (2000) Disruption of an Arabidopsis cytoplasmic ribosomal protein S13-homologous gene by transposon-mediated mutagenesis causes aberrant growth and development. Plant J 22: 257-264. Kazmin, D.A., Chinenov, Y., Larson, E. and Starkey, J.R. (2003) Comparative modeling of the N-terminal domain of the 67kDa laminin-binding protein: implications for putative ribosomal function. Biochem Biophys Res Commun 300: 161-166. Keppel, E. and Schaller, H.C. (1991) A 33 kDa protein with sequence homology to the ''laminin binding protein'' is associated with the cytoskeleton in hydra and in mammalian cells. J Cell Sci 100 ( Pt 4): 789-797. Makrides, S., Chitpatima, S.T., Bandyopadhyay, R. and Brawerman, G. (1988) Nucleotide sequence for a major messenger RNA for a 40 kilodalton polypeptide that is under translational control in mouse tumor cells. Nucleic Acids Res 16: 2349. Mettler, I.J. (1987) A simple and rapid method for minipreparation of DNA from tissue cultured plant cells. Plant Mol Biol Rep 5: 346-349. McCaffery, P., Neve, R.L. and Drager, U.C. (1990) A dorso-ventral asymmetry in the embryonic retina defined by protein conformation. Proc Natl Acad Sci U S A 87: 8570-8574. Melnick, M.B., Noll, E. and Perrimon, N. (1993) The Drosophila stubarista phenotype is associated with a dosage effect of the putative ribosome-associated protein D-p40 on spineless. Genetics 135: 553-564. Morimoto, T., Suzuki, Y. and Yamaguchi, I. (2002) Effects of partial suppression of ribosomal protein S6 on organ formation in Arabidopsis thaliana. Biosci Biotechnol Biochem 66: 2437-2443. Nishimura, T., Wada, T., Yamamoto, K.T. and Okada, K. (2005) The Arabidopsis STV1 protein, responsible for translation reinitiation, is required for auxin-mediated gynoecium patterning. Plant Cell 17: 2940-2953. Ouzonis, C., Kyrpides, N. and Sander, C. (1995) Novel protein families in archaean genomes. Nucleic Acids Res 23: 565-570. Park, C.J., Peng, Y., Chen, X., Dardick, C., Ruan, D., Bart, R., Canlas, P.E. and Ronald, P.C. (2008) Rice XB15, a protein phosphatase 2C, negatively regulates cell death and XA21-mediated innate immunity. PLoS Biol 6: e231. Pinon, V., Etchells, J.P., Rossignol, P., Collier, S.A., Arroyo, J.M., Martienssen, R.A. and Byrne, M.E. (2008) Three PIGGYBACK genes that specifically influence leaf patterning encode ribosomal proteins. Development 135: 1315-1324. Popescu, S.C. and Tumer, N.E. (2004) Silencing of ribosomal protein L3 genes in N. tabacum reveals coordinate expression and significant alterations in plant growth, development and ribosome biogenesis. Plant J 39: 29-44. Rabacchi, S.A., Neve, R.L. and Drager, U.C. (1990) A positional marker for the dorsal embryonic retina is homologous to the high-affinity laminin receptor. Development 109: 521-531. Rabilloud, T., Carpentier, G. and Tarroux, P. (1988) Improvement and simplification of low-background silver staining of proteins by using sodium dithionite. Electrophoresis 9: 288-291. Revenkova, E., Masson, J., Koncz, C., Afsar, K., Jakovleva, L. and Paszkowski, J. (1999) Involvement of Arabidopsis thaliana ribosomal protein S27 in mRNA degradation triggered by genotoxic stress. Embo J 18: 490-499. Rosenthal, E.T. and Wordeman, L. (1995) A protein similar to the 67 kDa laminin binding protein and p40 is probably a component of the translational machinery in Urechis caupo oocytes and embryos. J Cell Sci 108 ( Pt 1): 245-256. Sugimoto-Shirasu, K. and Roberts, K. (2003) "Big it up": endoreduplication and cell-size control in plants. Curr Opin Plant Biol 6: 544-553. Susantad, T. and Smith, D.R. (2008) siRNA-mediated silencing of the 37/67-kDa high affinity laminin receptor in Hep3B cells induces apoptosis. Cell Mol Biol Lett 13: 452-464. Tabb-Massey, A., Caffrey, J.M., Logsden, P., Taylor, S., Trent, J.O. and Ellis, S.R. (2003) Ribosomal proteins Rps0 and Rps21 of Saccharomyces cerevisiae have overlapping functions in the maturation of the 3'' end of 18S rRNA. Nucleic Acids Res 31: 6798-6805. Tohgo, A., Takasawa, S., Munakata, H., Yonekura, H., Hayashi, N. and Okamoto, H. (1994) Structural determination and characterization of a 40 kDa protein isolated from rat 40 S ribosomal subunit. FEBS Lett 340: 133-138. Tzafrir, I., Dickerman, A., Brazhnik, O., Nguyen, Q., McElver, J., Frye, C., Patton, D. and Meinke, D. (2003) The Arabidopsis SeedGenes Project. Nucleic Acids Res 31: 90-93. Tzafrir, I., Pena-Muralla, R., Dickerman, A., Berg, M., Rogers, R., Hutchens, S., Sweeney, T.C., McElver, J., Aux, G., Patton, D. and Meinke, D. (2004) Identification of genes required for embryo development in Arabidopsis. Plant Physiol 135: 1206-1220. Van Lijsebettens, M., Vanderhaeghen, R., De Block, M., Bauw, G., Villarroel, R. and Van Montagu, M. (1994) An S18 ribosomal protein gene copy at the Arabidopsis PFL locus affects plant development by its specific expression in meristems. Embo J 13: 3378-3388. Weijers, D., Franke-van Dijk, M., Vencken, R.J., Quint, A., Hooykaas, P. and Offringa, R. (2001) An Arabidopsis Minute-like phenotype caused by a semi-dominant mutation in a RIBOSOMAL PROTEIN S5 gene. Development 128: 4289-4299. Yao, Y., Ling, Q., Wang, H. and Huang, H. (2008) Ribosomal proteins promote leaf adaxial identity. Development 135: 1325-1334. Yenofsky, R., Bergmann, I. and Brawerman, G. (1982) Messenger RNA species partially in a repressed state in mouse sarcoma ascites cells. Proc Natl Acad Sci U S A 79: 5876-5880. Yow, H.K., Wong, J.M., Chen, H.S., Lee, C.G., Davis, S., Steele, G.D., Jr. and Chen, L.B. (1988) Increased mRNA expression of a laminin-binding protein in human colon carcinoma: complete sequence of a full-length cDNA encoding the protein. Proc Natl Acad Sci U S A 85: 6394-6398.
摘要: 
The functions of rice oleosin and ribosomal protein Osp40 were analyzed by knocking-out or knocking-down their expression using RNA interference (RNAi) approache. Transgenic rice plants 35S::ole16i, 35S::ole18i and 705::p40i containing RNAi constructs of ole16, ole18 and Osp40a were generated seperately.
There are two oleosin isoforms OLE16 and OLE18 in rice oil bodies. Different effects on triacylglycerol packaging to oil bodies were observed in transgenic rice seeds that eliminating one of their two oleosin isoforms. Oil bodies isolated from both 35S::ole16i and 35S::ole18i transgenic seeds were found to be of comparable size and stability to those isolated from wild-type rice seeds, although they were merely sheltered by a single oleosin isoform. Electron microscopy revealed a few large, irregular oil clusters in 35S::ole16i transgenic seed cells, whereas accumulated oil bodies in 35S::ole18i transgenic seed cells were comparable to or slightly larger than those in wild-type seed cells. The drastic difference between the triacylglycerol contents of crude seed extracts and isolated oil bodies from 35S::ole16i transgenic plants could be attributed to the presence of large, unstable oil clusters that were sheltered by insufficient amounts of oleosin and therefore could not be isolated together with stable oil bodies.
Three ribosomal protein p40 genes Osp40a, Osp40b and Osp40c are identified from the rice genome. In addition to the major 40 kD protein band, this study also observed a minor 33 kD protein band in most of the rice tissues. The 705::p40i transgenic plants with the suppression of Osp40s revealed retarded growth and showed smaller in size or shorter in length in all vegetative and reproductive organs. The longitudinal section of stem showed much smaller cell sizes in p40i plants suggesting that the reduction of Osp40 protein inhibited cell elongation which could be the cause of the shorter stem and peduncle length. The cross section of stem and leaf of p40i plants also revealed smaller cell sizes which resulted in a smaller stem and leaf and also reduced the sizes of vascular bundles. However, the epidermis cells of leaf in p40i plants showed no different from those of the wild type. No stable homozygous p40i transgenic line was survived and the progenies of survived p40i lines would segregate into various sized seedlings. The protein analyses of these various sized seedlings revealed that the greater the suppression of Osp40s, the less the total proteins synthesized and that resulted in the smaller seedlings. Although the size of each part of the p40i plant has been reduced as a result of the limited amount of the available Osp40s proteins, all vegetative and reproductive organs remain functional. Taken together, Osp40s are essential proteins for rice growth and development and function as a key component in the translation machinery.

本研究藉由RNA干擾法抑制油體膜蛋白與核醣體蛋白Osp40之表現探討基因功能。35S::ole16i、35S::ole18i與705::p40i植株分別具有ole16、ole18與Osp40a基因的RNAi構築。
水稻油體上有OLE16與OLE18兩種油體膜蛋白異型體。當失去其中一個油體膜蛋白異型體對於三酸甘油脂包裹到油脂體的影響不同。由35S::ole16i與35S::ole18i轉殖材料萃取得油體,其穩定度與大小與非轉殖材料油體相同,顯示單一油體膜蛋白即可獨立穩定油體。由穿透式電子顯微鏡觀察,與非轉殖材料相比較,有大型的油泡出現在35S::ole16i轉殖種子中,而35S::ole18i轉殖種子中的油體只是略大。顯示出現在35S::ole16i轉殖種子中的大型油泡不穩定,而無法與穩定的油體一起被萃取。
水稻基因組中共有三個核醣體蛋白p40基因,分別命名為Osp40a、Osp40b與Osp40c。除了40 kDa位置的主要訊號外,水稻p40蛋白質另以33 kDa形式存在於各組織中。705::p40i植株中因Osp40蛋白質表現量受抑制,造成植株生長遲緩,各營養或生殖組織變小或變短。由稻稈縱切發現細胞變小,故推測Osp40蛋白缺失造成細胞伸長能力受抑制,進一步造成稻稈與總花柄長度縮減。稻稈與葉片橫切顯示細胞尺寸縮小,進一步造成微管束變小。然而葉片表皮細胞大小不變。目前尚未獲得p40i同質品系之植株,由異質品系p40i植株所採收的種子播種後的幼苗生長速度不一致,Osp40蛋白質含量越低,幼苗生長受抑制越明顯。縱然p40i轉植株各部位變小係由於可用的Osp40蛋白量有限,各營養或生殖組織仍保有其功能性。總而言之,Osp40蛋白為水稻生長與發育之必要性蛋白質,並且於蛋白質轉譯工作扮演一重要角色。
URI: http://hdl.handle.net/11455/22138
其他識別: U0005-1908201010104800
Appears in Collections:分子生物學研究所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.