Please use this identifier to cite or link to this item:
標題: A novel synthetic process for (R)-phenylephrine production using enantioselective enzymatic catalysis and Walden inversion reaction
作者: Lin, Wei-De
關鍵字: 生物轉換;Rhodococcus erythropolis;不對稱合成;類腎上腺素藥物;Amino alcohol dehydrogenase;Phenylephrine;Enantioselective synthesis;Bioconversion
出版社: 分子生物學研究所
引用: 正文: 木村康一,木島正夫同。1950。藥用植物學謥論, 三版。廣川書店,東京。 林郁君。2008。酮基還原酵素之篩選俾應用於L-phenylephrine之生產。碩士論文,中興大學分子生物學研究所。 台中市,台灣。 徐人英。1975。藥物化學。合記圖書出版社,臺北市。 徐憶舒等。2001。MIMS Pharmacy Guide 現代藥師指南。台灣美迪達卡股份有限公司。台北市。 陳建宇。2009。Rhodococcus spp. aminoketone reductase之基因選殖、特性分析及其應用於phenylephrine之生產。碩士論文,中興大學分子生物學研究所。 台中市,台灣。 陳慧中。2006。 酮基還原酵素之篩選俾應用於L-phenylephrine之生合成。碩士論文,中興大學分子生物學研究所。 台中市,台灣。 福田英臣。1984。藥理學, 十一刷。朝倉, 東京。 釋成一,楊永裕。1987。中國藥用植物名實圖考編著。中國藥用植物學會,臺北市。 Armstrong DW, Lee JT, Chang LW. Enantiomeric impurities in chiral catalysts, auxiliaries and synthons used in enantioselective synthesis. Tetrahedron: Asymmetry 1998;9:2043-2064. Astrup A. Thermogenic drugs as a strategy for treatment of obesity. Endocrine. 2000; 13:207. Barker J, Ando DJ, Davis R. Mass spectrometry 2nd ed. New York: John Wiley & Sons; 1999. Bergmann ED, Sulzbacher M. A new synthesis of 1-(m- and p-hydroxyphenyl)- 2-methylaminoethanol (m- and p-sympathol). J Org Chem 1951;16:84-89. Britten AZ. A new route to d, l-phenylephrine. Chem Ind 1968;24:771-772. Clark WG, Brater DC, Johnson AR. Goth’s medical pharmacology, 13th ed. St. Louis: Mosby-Year Book, Inc.; 1992. p.139. Clayden J, Greeves N, Warren S, Wothers P. Organic Chemistry. Oxford: Oxford University Press; 2000. p. 394. Coombes R. Cold Turkey. BMJ 2007;334:1190-1192. De Wildeman SM, Sonke T, Schoemaker HE, May O. Biocatalytic reductions: from lab curiosity to "first choice". Acc Chem Res 2007;40:1260-1266. Dorokhova MI, Smolina NE, Tikhonova YaO, Mikhalev VA. Inversion of configuration of optically active 1-m-nitrophenyl-2-methylaminoethanols. Pharm Chem J 1974;8:209-211. Douglas A. Treco, Fred Winston. Growth and manipulation of yeast. Curr Protoc Mol Biol 2008;82:13.2.1-13.2.12. Dukes MNG. Meyler''s side effects of drugs: an encyclopedia of adverse reactions and interactions, 13th ed. Amsterdam: Elsevier; 1996. Eriksson T, Björkman S, Höglund P. Clinical pharmacology of thalidomide. Eur J Clin Pharmacol. 2001;57:365-76. Faber K. Biotransformation in Organic Chemistry. Berlin: Springer-Verlag; 2004. p. 183-204. Filling C, Berndt KD, Benach J, Knapp S, Prozorovski T, Nordling E, et al. Critical residues for structure and catalysis in short-chain dehydrogenases/reductases. J Biol Chem 2002;277:25677-25684. Goldberg K, Schroer K, Lütz S, Liese A. Biocatalytic ketone reduction--a powerful tool for the production of chiral alcohols-part II: whole-cell reductions. Appl Microbiol Biotechnol 2007;76:249-55. Hengstmann JH, Goronzy J. Pharmacokinetics of 3H-phenylephrine in man. Eur J Clin Pharmacol 1982;21:335–341. Hoffman BB. Adrenoceptor-activating and other sympathomimetic drugs. In: Katzung BG, editor. Basic & clinical pharmacology. 10th ed. New York: McGraw-Hill; 2007. p. 121-40. Hoffmann F, Maser E. Carbonyl reductases and pluripotent hydroxysteroid dehydrogenases of the short-chain dehydrogenase/reductase superfamily. Drug Metab Rev 2007;39:87-144. Hopfgartner G, Bourgogne E. Quantitative high-throughput analysis of drugs in biological matrices by mass spectrometry. Mass Spectrom Rev 2003;22:195-214. Hsin LW, Dersch CM, Baumann MH, Stafford D, Glowa JR, Rothman RB, et al. Development of long-acting dopamine transporter ligands as potential cocaine-abuse therapeutic agents: chiral hydroxyl-containing derivatives of 1-[2-[bis(4-fluorophenyl)methoxy]ethyl]-4-(3-phenylpropyl)piperazine and 1-[2-(diphenylmethoxy)ethyl]-4-(3-phenylpropyl)piperazine. J Med Chem 2002;45:1321-1329. Hsu SK, Lo HH, Kao CH, Lee DS, Hsu WH. Enantioselective synthesis of L-homophenylalanine by whole cells of recombinant Escherichia coli expressing L-aminoacylase and N-acylamino acid racemase genes from Deinococcus radiodurans BCRC12827. Biotechnol Prog 2006;22:1578-1584. Huang K, Breitbach ZS, Armstrong DW. Enantiomeric impurities in chiral synthons, catalysts, and auxiliaries: Part 3. Tetrahedron: Asymmetry 2006;17:2821-2832. Itoh N, Matsuda M, Mabuchi M, Dairi T, Wang J. Chiral alcohol production by NADH-dependent phenylacetaldehyde reductase coupled with in situ regeneration of NADH. Eur J Biochem 2002;269:2394-2402. Kanfer I, Dowse R, Vuma V. Pharmacokinetics of oral decongestants. Pharmacotherapy. 1993;13:116S-128S. Kataoka M, Rohani LPS, Wada M, Kita K, Yanase H, Urabe I, Shimizu S. Escherichia coli transformant expressing the glucose dehydrogenase gene from Bacillus megaterium as a cofactor regenerator in a chiral alcohol production system. Biosci Biotechnol Biochem. 1998;62:167–169. Kataoka M, Ishige T, Urano N, Nakamura Y, Sakuradani E, Fukui S, et al. Cloning and expression of the L-1-amino-2-propanol dehydrogenase gene from Rhodococcus erythropolis, and its application to double chiral compound production. Appl Microbiol Biotechnol 2008;80:597-604. Kataoka M, Morikawa T, Kita S, Sakamoto K, Shimizu S, Tsuzaki K. Aminoketone asymmetric reductase and nucleic acid thereof. 2002. Japanese Patent, WO 02070714. Katz M, Frejd T, Hahn-Hägerdal B, Gorwa-Grauslund MF. Efficient anaerobic whole cell stereoselective bioreduction with recombinant Saccharomyces cerevisiae. Biotechnol Bioeng 2003;84:573-582. Kavanagh KL, Jörnvall H, Persson B, Oppermann U. The SDR superfamily: functional and structural diversity within a family of metabolic and regulatory enzymes. Cell Mol Life Sci 2008;65:3895-3906. Kernan WN, Viscoli CM, Brass LM, Broderick JP, Brott T, Feldmann E, Morgenstern LB, Wilterdink JL, Horwitz RI. Phenylpropanolamine and the risk of hemorrhagic stroke. N. Engl. J. Med. 2000; 343:1826. Klinger FD, Wolter L, Dietrich W. Method for preparing of L-phenylephrine hydrochloride. U.S. Patent 6,187,956 (2001). Kroutil W, Mang H, Edegger K, Faber K. Recent advances in the biocatalytic reduction of ketones and oxidation of sec-alcohols. Curr Opin Chem Biol 2004;8:120-126. Kumar P, Naidu V, Gupta P. Application of hydrolytic kinetic resolution (HKR) in the synthesis of bioactive compounds. Tetrahedron 2007;63:2745–2785. Lavandera I, Kern A, Ferreira-Silva B, Glieder A, de Wildeman S, Kroutil W. Stereoselective bioreduction of bulky-bulky ketones by a novel ADH from Ralstonia sp. J Org Chem 2008;73:6003-6005. Lee YC, Chien HC, Hsu WH. Production of N-acetyl-D-neuraminic acid by recombinant whole cells expressing Anabaena sp. CH1 N-acetyl-D-glucosamine 2-epimerase and Escherichia coli N-acetyl-D-neuraminic acid lyase. J Biotechnol 2007;129:453-460. Loyd VA et al. Handbook of nonprescription drugs, 13th ed. Washington, DC: American Pharmaceutical Association; 2002. Marín A, Barbas C. LC/MS for the degradation profiling of cough-cold products under forced conditions. J Pharm Biomed Anal 2004;35:1035-1045. Marín A, García E, García A, Barbas C. Validation of a HPLC quantification of acetaminophen, phenylephrine and chlorpheniramine in pharmaceutical formulations: capsules and sachets. J Pharm Biomed Anal 2002;29:701-714. Masimirembwa CM, Thompson R, Andersson TB. In vitro high throughput screening of compounds for favorable metabolic properties in drug discovery. Comb Chem High Throughput Screen 2001;4:245-63. Meadows M. FDA issues public health advisory on phenylpropanolamine in drug products. FDA Consum. 2001; 35:9. Muller NF, Dessing RP. European drug index, 3rd Ed. Stuttgart: European Society of Clinical Pharmacy, Deutscher Apotheker Verlag; 1994. Oppermann U, Filling C, Hult M, Shafqat N, Wu X, Lindh M, et al. Short-chain dehydrogenases/reductases (SDR): the 2002 update. Chem Biol Interact 2003;143-144:247-253. Pandey RK, Upadhyay PK, Kumar P. Enantioselective synthesis of (R)-phenylephrine hydrochloride. Tetrahedron Lett 2003;44:6245–6246. Patel R, Hanson R, Goswami A, Nanduri V, Banerjee A, Donovan MJ, et al. Enzymatic synthesis of chiral intermediates for pharmaceuticals. J Ind Microbiol Biotechnol 2003;30:252-259. Patel RN. Microbial/enzymatic synthesis of chiral drug intermediates. Adv Appl Microbiol. 2000;47:33-78. Pennacchio A, Pucci B, Secundo F, La Cara F, Rossi M, Raia CA. Purification and characterization of a novel recombinant highly enantioselective short-chain NAD(H)-dependent alcohol dehydrogenase from Thermus thermophilus. Appl Environ Microbiol 2008;74:3949-58. Prelog V. Specification of the stereospecificity of some oxido-reductases by diamond lattice sections. Pure Appl Chem 1964; 9:119-130. Price AC, Zhang YM, Rock CO, White SW. Structure of beta-ketoacyl-[acyl carrier protein] reductase from Escherichia coli: negative cooperativity and its structural basis. Biochemistry 2001;40:12772-12781. Ptácek P, Klíma J, Macek J. Development and validation of a liquid chromatography-tandem mass spectrometry method for the determination of phenylephrine in human plasma and its application to a pharmacokinetic study. J Chromatogr B Analyt Technol Biomed Life Sci 2007;858:263-268. Ronald MA et al. ed. Encyclopedia of life sciences. London: Nature Publishing Group; 2002. Russell PB, Childerss ST. New route to phenylephrine. J Pharm Sci 1961;50:713. Schlieben NH, Niefind K, Müller J, Riebel B, Hummel W, Schomburg D. Atomic resolution structures of R-specific alcohol dehydrogenase from Lactobacillus brevis provide the structural bases of its substrate and cosubstrate specificity. J Mol Biol 2005;349:801-813. Takeda H, Tachinami T, Aburatani M, Takahashi H, Morimoto M, Achiwa K. Practical asymmetric synthesis of (R)-(−)-phenylephrine hydrochloride catalyzed by (2R,4R)-MCCPM-rhodium complex. Tetrahedron Lett 1989;30:367-370. Tang Y, Lee HY, Tang Y, Kim CY, Mathews I, Khosla C. Structural and functional studies on SCO1815: a beta-ketoacyl-acyl carrier protein reductase from Streptomyces coelicolor A3(2). Biochemistry 2006;45:14085-14093. Tanne JH. Methamphetamine epidemic hits middle America. BMJ 2006;332:382. Trost BM. Asymmetric catalysis: an enabling science. Proc Natl Acad Sci U S A. 2004;101:5348-55. Uehling DE, Donaldson KH, Deaton DN, Hyman CE, Sugg EE, Barrett DG, et al. Synthesis and evaluation of potent and selective b3 adrenergic receptor agonists containing acylsulfonamide, sulfonylsulfonamide, and sulfonylurea carboxylic acid isosteres. J Med Chem 2002;45:567-583. van der Werf MJ, van der Ven C, Barbirato F, Eppink MH, de Bont JA, van Berkel WJ. Stereoselective carveol dehydrogenase from Rhodococcus erythropolis DCL14. A novel nicotinoprotein belonging to the short chain dehydrogenase/reductase superfamily. J Biol Chem 1999;274:26296-26304. Waller DG, Hillier K, Renwick AG. Medical pharmacology and therapeutics. New York: W.B. Saunders; 2001. p.123. Warnke MM, Mitchell CR, Rozhkov RV, Emrich DE, Larock RC, Armstrong DW. Use of native and derivatized cyclodextrin based and macrocyclic glycopeptide based chiral stationary phases for the enantioseparation of pterocarpans by HPLC. J Liq Chromatogr Relat Technol 2005;28:823-834. Westfall TC, Westfall DP. Adrenergic agonists and antagonists. In: Brunton LL, Lazo JS, Parker KL, editors. Goodman and Gilman’s the pharmacological basis of therapeutics. 11th ed. New York: McGraw-Hill; 2006. p. 237-95. Zaccai NR, Carter LG, Berrow NS, Sainsbury S, Nettleship JE, Walter TS, et al. Crystal structure of a 3-oxoacyl-(acylcarrier protein) reductase (BA3989) from Bacillus anthracis at 2.4-Å resolution. Proteins 2008;70:562-567. Zhu D, Yang Y, Hua L. Stereoselective enzymatic synthesis of chiral alcohols with the use of a carbonyl reductase from Candida magnoliae with anti-Prelog enantioselectivity. J Org Chem 2006;71:4202-4205. 附錄一: Allwood JW, Goodacre R. An introduction to liquid chromatography-mass spectrometry instrumentation applied in plant metabolomic analyses. Phytochem Anal. 2010; 21:33. Ardrey RE. Liquid chromatography-mass spectrometry: an introduction. Chichester: John Wiley & Sons; 2003. p.33-74. Decaestecker TN, Vande Casteele SR, Wallemacq PE, Van Peteghem CH, Defore DL, Van Bocxlaer JF. Information-dependent acquisition-mediated LC-MS/MS screening procedure with semiquantitative potential. Anal Chem. 2004; 76:6365. Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM. Electrospray ionization for mass spectrometry of large biomolecules. Science. 1989; 246:64. Gogichaeva NV, Williams T, Alterman MA. MALDI TOF/TOF tandem mass spectrometry as a new tool for amino acid analysis. J Am Soc Mass Spectrom. 2007; 18:279. Griffiths WJ, Wang Y. Mass spectrometry: from proteomics to metabolomics and lipidomics. Chem Soc Rev. 2009; 38:1882. Hlongwane C, Delves IG, Wan LW, Ayorinde FO. Comparative quantitative fatty acid analysis of triacylglycerols using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and gas chromatography.Rapid Commun. Mass Spectrom. 2001; 15:2027. Honour JW. Gas chromatography-mass spectrometry. Methods Mol Biol. 2006; 324:53. Hsu WY, Lo WY, Lai CC, Tsai FJ, Tsai CH, Tsai Y, Lin WD, Chao MC. Rapid screening assay of trimethylaminuria in urine with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2007; 21:1915. Lin WD, Wu JY, Lai CC, Tsai FJ, Tsai CH, Lin SP, Niu DM. A pilot study of neonatal screening by electrospray ionization tandem mass spectrometry in Taiwan. Acta Paediatr Taiwan 2001; 42:224. Medeiros PM, Simoneit BR. Gas chromatography coupled to mass spectrometry for analyses of organic compounds and biomarkers as tracers for geological, environmental, and forensic research. J Sep Sci. 2007; 30:1516. Pasikanti KK, Ho PC, Chan EC. Gas chromatography/mass spectrometry in metabolic profiling of biological fluids. J Chromatogr B. 2008; 871:202. Paul W, Steinwedel H. Apparatus for separating charged particles of different specific charges. 1960; US patent 2939952 Rashed MS, Bucknall MP, Little D, Awad A, Jacob M, Alamoudi M, Alwattar M, Ozand PT. Screening blood spots for inborn errors of metabolism by electrospray tandem mass spectrometry with a microplate batch process and a computer algorithm for automated flagging of abnormal profiles. Clin Chem 1997; 43:1129. Stephens WE. A pulsed mass spectrometer with time dispersion. Phys Rev 1946; 69:691. Tan B, Bradshaw HB, Rimmerman N, Srinivasan H, Yu YW, Krey JF, Monn MF, Chen JS, Hu SS, Pickens SR, Walker JM. Targeted lipidomics: discovery of new fatty acyl amides. AAPS J. 2006; 8:E461. Tanaka K, Waki H, Ido Y, Akita S, Yoshida Y, Yoshida T. Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry . Rapid Commun. Mass Spectrom. 1988; 2:151. Yamashita M, Fenn JB. Electrospray ion source. Another variation on the free-jet theme. J. Phys. Chem. 1984; 88: 4451. Yamashita M, Fenn JB. Negative ion production with the electrospray ion source. J. Phys. Chem. 1984; 88: 4671. Yost RA, Enke CG. Selected ion fragmentation with a tandem quadrupole mass spectrometer. J. Am. Chem. Soc. 1978; 100:2274. 附錄二: 羅雪霞。2004。利用新的酵素法生產L-Homophenylalanine。博士論文,中興大學分子生物學研究所。 台中市,台灣。 陳怡潔。2009。從土壤多源基因體中篩選出離胺酸消旋酵素並以離胺酸消旋酵素基因作為植物基因選殖的篩選標記。博士論文,中興大學分子生物學研究所。 台中市,台灣。 甘淑貞。2010。Corynebacterium glutamicum NCHU 87078及其噬菌體P1201之thymidylate synthase, intein及lytic enzyme的生化特性分析。博士論文,中興大學分子生物學研究所。 台中市,台灣。 Ahmad AL, Oh PC, Abd Shukor SR. Sustainable biocatalytic synthesis of L-homophenylalanine as pharmaceutical drug precursor. Biotechnol Adv. 2009;27:286-96. Arruda P, Bright SW, Kueh JS, Lea PJ, Rognes SE. Regulation of Aspartate Kinase Isoenzymes in Barley Mutants Resistant to Lysine plus Threonine: Construction and Analysis of Combinations of the Lt1a, Lt1b, and Lt2 Mutant Genes. Plant Physiol. 1984;76:442-446. Banoub JH, Newton RP, Esmans E, Ewing DF, Mackenzie G. Recent developments in mass spectrometry for the characterization of nucleosides, nucleotides, oligonucleotides, and nucleic acids. Chem Rev. 2005;105:1869-915. Bennett PM, Livesey CT, Nathwani D, Reeves DS, Saunders JR, Wise R. An assessment of the risks associated with the use of antibiotic resistance genes in genetically modified plants: report of the Working Party of the British Society for Antimicrobial Chemotherapy. J. Antimicrob. Chemother. 2004;53:418-431. Bryan J. Synthesis of the aspartate family and branchedchain amino acids. In: Miflin BJ (ed) The biochemistry of plants, vol 5. New York; Academic Press; 1980. p. 403–452. Chace DH, Millington DS, Terada N, Kahler SG, Roe CR, Hofman LF. Rapid diagnosis of phenylketonuria by quantitative analysis for phenylalanine and tyrosine in neonatal blood spots by tandem mass spectrometry. Clin Chem. 1993;39:66-71. Chalcraft KR, Britz-McKibbin P. Newborn screening of inborn errors of metabolism by capillary electrophoresis-electrospray ionization-mass spectrometry: a second-tier method with improved specificity and sensitivity. Anal Chem. 2009;81:307-14. Chen IC, Thiruvengadam V, Lin WD, Chang HH, Hsu WH. Lysine racemase: a novel non-antibiotic selectable marker for plant transformation. Plant Mol Biol. 2010; 72:153-169. Coggan AR. Use of stable isotopes to study carbohydrate and fat metabolism at the whole-body level. Proc Nutr Soc. 1999;58:953-61. Cooper C, Packer N, Williams K, editor. Amino Acid Analysis Protocols. Methods in molecular biology. vol. 159. Totowa: Humana Press; 2001. p.1-7. Esmans EL, Broes D, Hoes I, Lemière F, Vanhoutte K. Liquid chromatography–mass spectrometry in nucleoside, nucleotide and modified nucleotide characterization. J Chromatogr A. 1998;794:109–127 Häberle J, Görg B, Toutain A, Rutsch F, Benoist JF, Gelot A, Suc AL, Koch HG, Schliess F, Häussinger D. Inborn error of amino acid synthesis: human glutamine synthetase deficiency. J Inherit Metab Dis. 2006;29:352-8. Hsu SK, Lo HH, Kao CH, Lee DS, Hsu WH. Enantioselective synthesis of L-homophenylalanine by whole cells of recombinant Escherichia coli expressing L-aminoacylase and N-acylamino acid racemase genes from Deinococcus radiodurans BCRC12827. Biotechnol Prog. 2006;22:1578-84. Hunter JH, Gujjar R, Pang CK, Rathod PK. Kinetics and ligand-binding preferences of Mycobacterium tuberculosis thymidylate synthases, ThyA and ThyX. PLoS One. 2008;3:e2237. Jansen RS, Rosing H, de Wolf CJ, Beijnen JH. Development and validation of an assay for the quantitative determination of cladribine nucleotides in MDCKII cells and culture medium using weak anion-exchange liquid chromatography coupled with tandem mass spectrometry. Rapid Commun Mass Spectrom. 2007;21:4049-59. Kao CH, Lo HH, Hsu SK, Hsu WH. A novel hydantoinase process using recombinant Escherichia coli cells with dihydropyrimidinase and L-N-carbamoylase activities as biocatalyst for the production of L-homophenylalanine. J Biotechnol. 2008;134:231-9. Kaspar H, Dettmer K, Gronwald W, Oefner PJ. Advances in amino acid analysis. Anal Bioanal Chem. 2009;393:445-52. Lai J, Wang J, Cai Z. Nucleoside reverse transcriptase inhibitors and their phosphorylated metabolites in human immunodeficiency virus-infected human matrices. J Chromatogr B Analyt Technol Biomed Life Sci. 2008;868:1-12. Lin WD, Wu JY, Lai CC, Tsai FJ, Tsai CH, Lin SP, Niu DM. A pilot study of neonatal screening by electrospray ionization tandem mass spectrometry in Taiwan. Acta Paediatr Taiwan 2001; 42:224-30. Liu K, Zhong D, Zou H, Chen X. Determination of tegafur, 5-fluorouracil, gimeracil and oxonic acid in human plasma using liquid chromatography-tandem mass spectrometry. J Pharm Biomed Anal. 2010;52:550-6. Lo HH, Hsu SK, Lin WD, Chan NL, Hsu WH. Asymmetrical synthesis of L-homophenylalanine using engineered Escherichia coli aspartate aminotransferase. Biotechnol Prog. 2005;21:411-5. Lo HH, Lin WD, Hsu SK, Hsu WH. Asymmetrically simultaneous synthesis of L-homophenylalanine and N6-protected-2-oxo-6-amino-hexanoic acid by engineered Escherichia coli aspartate aminotransferase. Biotechnol Prog. 2009;25:1637-42. Lomax MI, Greenberg GR. A new assay of thymidylate synthetase activity based on the release of tritium from deoxyuridylate-5-3H. J Biol Chem. 1967;242:109-13. Mauriala T, Herzig KH, Heinonen M, Idziak J, Auriola S. Determination of long-chain fatty acid acyl-coenzyme A compounds using liquid chromatography-electrospray ionization tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2004;808:263-8. Miao S, Duncan DR, JM W. Selection of regenerable maize callus cultures resistant to 5-methyl-DL-tryptophane, S-2-aminoethyl-L-cysteine and high levels of L-lysine plus L-threonine. Plant Cell Tissue Org. Cult. 1988:14:3-14. Michal G. Biochemical pathways: an atlas of biochemistry and molecular biology. New York: John Wiley & Sons; 1999. p.99-107. Miki, B, McHugh S. Selection marker genes in trasgenic plants: applications, alternatives and biosafety. J. Biotechnol. 2004;170:193-232. Namwat, W., H. Kinoshita, T. Nihira. Identification by heterologous expression and gene disruption of VisA as L-lysine 2-aminotransferase essential for virginiamycin S biosynthesis in Streptomyces virginiae. J. Bacteriol. 2002:184:4811-4818. Piraud M, Vianey-Saban C, Bourdin C, Acquaviva-Bourdain C, Boyer S, Elfakir C, Bouchu D. A new reversed-phase liquid chromatographic/tandem mass spectrometric method for analysis of underivatised amino acids: evaluation for the diagnosis and the management of inherited disorders of amino acid metabolism. Rapid Commun Mass Spectrom. 2005;19:3287-97. Rajcevic U, Niclou SP, Jimenez CR. Proteomics strategies for target identification and biomarker discovery in cancer. Front Biosci. 2009;14:3292-303. Rognes SE, Simon WJ, BJ M. Feedback-insensitive aspartate kinase isoenzymes in barley mutants resistant to lysine plus threonine. Planta 1983:157:32-38.
(R)-phenylephrine [(R)-PE] is an α-1-adrenergic receptor agonist that is widely used in over-the-counter drugs to treat the common cold. In this study, three bacteria strains were able to convert 1-(3-hydroxyphenyl)-2-(methylamino) ethanone (HPMAE) to (S)-PE. And the other two yeast strains can convert 2-[benzyl-(methyl)amino]- 1-(3-hydroxyphenyl)ethanone (BMAHPE) to BMA-PE. We found that Rhodococcus erythropolis BCRC10909 can convert detectable level of HPMAE to (S)-PE by high performance liquid chromatography tandem mass spectrometry analysis. An amino alcohol dehydrogenase gene (RE_AADH) which possesses the ability to convert HPMAE to (S)-PE was then isolated from R. erythropolis BCRC10909 and expressed in Escherichia coli NovaBlue. The purified RE_AADH, tagged with 6'His, had a molecular mass of approximately 30 kDa and exhibited a specific activity of 0.19 mU/mg to HPMAE in the presence of NADPH, indicating this enzyme could be categorized as NADP+-dependent short-chain dehydrogenase reductase. E. coli NovaBlue cell expressing the RE_AADH gene was able to convert HPMAE to (S)-PE with more than 99% enantiomeric excess (ee), 78% yield and a productivity of 3.9 mmol (S)-PE/L h in 12 h at 30°C and pH 7. The (S)-PE, recovered from reaction mixture by precipitation at pH 11.3, could be converted to (R)-PE (ee > 99%) by Walden inversion reaction. This is the first reported biocatalytic process for the production of (S)-PE from HPMAE.

(R)-phenylephrine [(R)-PE]為一種類腎上腺素藥物,具有鬆弛支氣管、治療鼻黏膜腫脹的功效,因此常添加於傷風感冒及抗過敏藥物中。此藥物屬於對掌性化合物(chiral compound),目前全部是以化學方法合成,在本研究中則要研發利用酵素法進行合成。本研究分別以1-(3-hydroxyphenyl)-2-(methylamino)ethanone (HPMAE)及2-[benzyl- (methyl)amino]-1-(3-hydroxyphenyl)ethanone (BMAHPE)為前驅物,篩選具有轉換成特定立體構型產物能力的微生物。經由小量的培養及反應,搭配HPLC-MS/MS方法分析測試,確認有三株細菌可將HPMAE還原成(S)-PE,另外兩株酵母菌則可以將BMAHPE還原成BMA-PE。利用PCR及選殖技術從其中一株Rhodococcus erythropolis BCRC 10909複製出一個amino alcohol dehydronase (RE_AADH)基因片段並在Escherichia coli NovaBlue中大量表現,並確認此RE_AADH具有轉換能力。經純化的RE_AADH分子量約30 kDa,需要NADPH協助才能進行,由序列比對其為NADP+-dependent short-chain dehydrogenase reductase的一種。在E. coli NovaBlue中表現RE_AADH,於30°C,pH 7條件下作用12小時,將HPMAE轉換成(S)-PE,轉換率可以達到78%,生產速率為3.9 mmol (S)-PE/L h,(S)-PE的光學純度ee值大於99%。接著將反應液的pH值調到pH 11.3就可以把(S)-PE沉澱出。將沉澱出之(S)-PE加入醋酸酐及硫酸,進行Wadern inversion反應改變旋光性,最後得到的產物為(R)-PE (ee > 99%)。這是第一個利用生物催化的方法從HPMAE合成出(S)-PE,未來將繼續尋找可以直接生成(R)-PE的菌株及酵素。
其他識別: U0005-2607201017340500
Appears in Collections:分子生物學研究所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.