Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/22202
標題: 量子點與石墨烯於脫附游離質譜術之應用
Application of Quantum Dots and Graphene in Desorption Ionization Mass Spectrometry
作者: 簡明瑋
Chien, Min-Wei
關鍵字: Quantum dot;量子點;Graphene;Desorption Ionization Mass Spectrometry;Biomolecular;石墨烯;脫附游離質譜術;生物小分子
出版社: 分子生物學研究所
引用: 王正雄。1999。淺談環境荷爾蒙--干擾內分泌之化學物質。環境檢驗雙月刊。 袁紹英。2000。鄰苯二甲酸酯類(Phthalate Esters)環境荷爾蒙對生物的影響。環境檢驗雙月刊。 楊雅欒。2006。月桃不同部位(根、莖及葉)之精油成分分析及抗氧化性測定。國立中興大學食品科學系碩士論文。台中,台灣。 Ajay, M., Gilani, A. U., Mustafa, M. R. Effects of flavonoids on vascular smooth muscle of the isolated rat thoracic aorta. Life Sci. 2003, 74, 603-612. Alan, L., Miller, N. D. Antioxidant flavonoids: structure, function and chiical usage. Altern. Med. Rev. 1996, 1, 103-111. Alonso, R., Orue, E., Marzo, F. Effects of extrusion and conventional processing methods on protein and antinutritional factor contents in pea seed. Food Chem. 1998, 63, 505-512. Arai, Y., Uehara, M., Sato, Y., Kimira, M., Adlercreutz, H., Watanabe, S. Comparison of isoflavone among dietary intake, plasma concentration and urinary excretion for accurate estimation of phytoestrogen intake. J. Epidemiol. 2000, 10,127-135. Asgary, S., Naderi, G., Sarrafzadegan, N., Ghassemi, N., Boshtan, M., Rafie, M., Arefian, A. Anti-oxidant effect of flavonoids on hemoglobin glycosylation. Pharm. Acta. Helv. 1999, 7, 223-226. Ayorinde, F. O., Garvin, K., Saeed, K. Determination of the fatty acid composition of saponified vegetable oils using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2000, 14, 608–615. Bailes, J., Vidal, L., Ivanov, D. A., Soloviev, M. Quantum dots improve peptide detection in MALDI MS in a size dependent manner. J. Nanobiotechnology 2009, 31, 1-12. Bailey, R. E., Smith, A. M., Nie, S. Quantum dots in biology and medicine. Physica. E. 2004, 25, 1-12. Balandin, A. A., Ghosh, S., Bao, W. Z., Calizo, I., Teweldebrhan, D., Miao, F., Lau, C. N. Superior thermal conductivity of single-layer grapheme. Nano. Lett. 2008, 8, 902-907. Banin, U., Lee, C. J., Guzelian, A. A., Kadavanich, A. V., Alivisatos, A. P., Jaskolski, W., Bryant, G. W., Efros, Al. L., Rosen, M. Size-dependent electronic level structure of InAs nanocrystal quantum dots: Test of multiband effective mass theory. J. Chem. Phys. 1998, 109, 2306-2309. Barthlott, W., Ninhuis, C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 1997, 202, 1-8. Bol, A. A., Meijerink, A. Luminescence of nanocrystalline ZnS: Pb2+. Phys. Chem. Chem. Phys. 2001, 3, 2105-2112. Bolotin, K. I., Sikes, K. J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., Kim, P., Stormer, H. L. Ultrahigh electron mobility in suspended graphene Solid State Commun. 2008, 146, 351-355. Brownson, D. A., Banks, C. E. Graphene electrochemistry: an overview of potential applications. Analyst 2010, 135, 2768-2778. Caltagirone, S., Rossi, C., Poggi, A., Ranelletti, F. O., Natali, P. G., Brunetti, M., Aiello, F. B., Piantelli, M. Flavonoids apigenin and quercetin inhibit melanoma growth and metastatic potential. Int. J. Cancer 2000, 87, 595-600. Chan, W. C. W., Nie, S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998, 281, 2016-2018. Charles, A. S., Dennis, R. P., Thomas, F. P., William, J. A. The Environmental Fate of Phthalate Esters: A Literature Review. Chemosphere 1998, 35, 667-749. Chen, D., Tang, L., Li, J. Graphene-based materials in electrochemistry. Chem. Soc. Rev. 2010, 39, 3157-3180. Chen, S. H., Li, K. I., Yu, C. S., Wang, J. S., Hu, Y. C., Lai, C. C. A Radiate Microstructure MALDI Chip for Sample Concentration and Detection. Anal. Chem. 2010, 82, 5951–5957. Chen, S. J., Chang, H. T. Nile Red-Adsorbed Gold Nanoparticles for Selective Determination of Thiols Based on Energy Transfer and Aggregation. Anal. Chem. 2004, 76, 3727-3734. Chen, W. Y., Chen, Y. C. Affinity-based mass spectrometry using magnetic iron oxide particles as the matrix and concentrating probes for SALDI MS analysis of peptides and proteins. Anal. Bioanal. Chem. 2006, 386, 699-704. Cotter, R. J. Plasma desorption mass spectrometry: coming of age. Anal. Chem. 1988, 60, 781-793. Crut, A., Geron-Landre, B., Bonnet, I., Bonneau, S. Detection of single DNA molecules by multicolor quantum-dot end-labeling. Nucleic Acids Res. 2005, 33, e98. Dong, X., Cheng, J., Li, J., Wang, Y. Graphene as a Novel Matrix for the Analysis of Small Molecules by MALDI-TOF MS. Anal. Chem. 2010, 82, 6208–6214. Duthie, S. J., Dobson, V. L. Dietary flavonoids protect human colonocyte DNA form oxidative attack in vitro. Eur. J. Nutr. 1999, 38, 28-34. Efros, A. L., Rosen, M. The electronic structure of semiconductor nanocrystals. Annu. Rev. Mater. Sci. 2000, 30, 475-521. Efros, A. L., Rosen, M., Kuno, M., Nirmal, M., Norris, D. J., Bawendi, M. Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: Dark and bright exciton states. Phys. Rev. B. Condens. Matter. 1996, 54, 4843-4856. Fu, C. C., Lee, H. Y., Chen, K., Lim, T. S., Wu, H. Y., Lin, P. K., Wei, P. K., Tsao, P. H., Chang, H. C., Fann, W. Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proc. Natl. Acad. Sci. USA. 2007, 104, 727-732. Geim, A. K., Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183-191. Green, A. A., Hersam, M. C. Emerging Methods for Producing Monodisperse Graphene Dispersions. J. Phys. Chem. Lett. 2010, 1, 544-549. Grundmann, M., Christen, J., Ledentsov, N. N., Bohrer, J., Bimberg, D., Ruvimov, S. S., Werner, P., Richter, U., Gosele, U., Heydenreich, J., Ustinov, V. M., Egorov, A. Y., Zhukov, A. E., Kop''ev, P. S., Alferov, Z. I. Ultranarrow Luminescence Lines from Single Quantum Dots. Phys. Rev. Lett. 1995, 74, 4043-4046. Gulbakan, B., Yasun, E., Shukoor, M. I., Zhu, Z., You, M., Tan, X., Sanchez, H., Powell, D. H., Dai, H., Tan, W. A Dual Platform for Selective Analyte Enrichment and Ionization in Mass Spectrometry Using Aptamer-Conjugated Graphene Oxide. J. Am. Chem. Soc. 2010, 132, 17408-17410. Gundry, R. L., Edward, R., Kole, T. P., Sutton, C., Cotter, R. J. Disposable Hydrophobic Surface on MALDI Targets for Enhancing MS and MS/MS Data of Peptides. Anal. Chem. 2005, 77, 6609–6617. Guo, Z., Zhang, Q. C., Zou, H. F., Guo, B. C., Ni, J. Y. A Method for the Analysis of Low-Mass Molecules by MALDI-TOF Mass Spectrometry. Anal. Chem. 2002, 74, 1637–1641. Havsteen, B. Flavonoids, a class of natural products of high pharmacological potency. Biochem. Pharmacol. 1983, 32, 1141-1148. Harvey, D. J. Matrix-assisted laser desorption/ionization mass spectrometry of carbohydrates. Mass Spectrom. Rev. 1999, 18, 349–450. Huang, Y. F., Chang, H. T. Nile red-adsorbed gold nanoparticle matrixes for determining aminothiols through surface-assisted laser desorption/ionization mass spectrometry. Anal. Chem. 2006, 78, 1485-1493. Iwata, K., Miwa, S., Inayama, T., Sasaki, H., Soeda, K., Sugahara, T. Effects of Kangra buckwheat on spontaneously hypertensive rats. J. Kagawa Nutr. College. 1990, 2, 55-61. Jia, X., Campos-Delgado, J., Terrones, M., Meunier, V., Dresselhaus, M. S. Graphene edges: a review of their fabrication and characterization. Nanoscale. 2011, 3, 86-95. Jian, W., Zhuang, J., Yang, W., Bai, Y. “Improved Photoluminescence of ZnS:Mn nanocrystals by microwave assisted growth of ZnS shell”. J. Lumin. 2007, 126, 735-740. Kailasa, S. K., Kiran, K., Wu, H. F. Comparison of ZnS semiconductor nanoparticles capped with various functional groups as the matrix and affinity probes for rapid analysis of cyclodextrins and proteins in surface-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal. Chem. 2008, 80, 9681-9688. Karas, M., Hillenkamp, F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal. Chem. 1984, 60, 2299-2301. Ke, Y., Kailasa, S. K., Wu, H. F., Chen, Z. Y. High resolution detection of high mass proteins up to 80,000 Da via multifunctional CdS quantum dots in laser desorption/ionization mass spectrometry. Talanta 2010, 83, 178-184. Kim, J., Kang, W. Use of graphite plate for homogeneous sample preparation in matrix/surface-assisted laser desorption and ionization of polypropyleneglycol and polystyrene. Bull. Korean Chem. Soc. 2000, 21, 401-404. Kim, J., Kim, K. S., Jiang, G., Kang, H., Kim, S., Kim, B. S., Park, M. H., Hahn, S. K. In vivo real-time bioimaging of hyaluronic acid derivatives using quantum dots. Biopolymers 2008, 89, 1144-1153. Kim, Y., Johnson, R. C., Hupp, J. T. Gold Nanoparticle-Based Sensing of “Spectroscopically Silent” Heavy Metal Ions. Nano Lett. 2001, 1, 165-167. Kinumi, T., Saisu, T., Takayama, M., Niwa, H. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using an inorganic particle matrix for small molecule analysis. J. Mass Spectrom. 2000, 35, 417-422. Knekt, P., Kumpulainen, J., Jarvinen, R., Rissanen, H., Heliovara, M., Reunanen, A., Hakulinen, T., Aroma, A. Flavonoid intake and risk of chronic diseases. Am J. Clin. Nutr. 2002, 76, 560-568. Lay, J. O. MALDI-TOF Mass Spectrometry of bacteria. Mass Spectrom. Rev. 2001, 20, 172–194. Lee, C., Wei, X., Kysar, J. W., Hone, J. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science 2008, 321, 385-388. Lee, J., He, B., Patankar, N. A. A roughness-based wettability switching membrane device for hydrophobic surfaces. J. Micromech. Microeng. 2005, 15, 591-600. Lee, J., Kim, Y. K., Min, D. H. Laser desorption/ionization mass spectrometric assay for phospholipase activity based on graphene oxide/carbon nanotube double-layer films. J. Am. Chem. Soc. 2010, 132, 14714-14717. Lee, S., Song, D., Kim, D., Lee, J., Kim, S., Park, I. Y., Cgoi, Y. D. Effects of synthesis temperature on particle size/shape and photoluminescence characteristics of ZnS: Cu nanocrystals. Mater. Lett. 2004, 58, 342-346. Lee, S., Song, D., Lee, J., Kim, S., Park, I. Y., Won, M. S. Enhancement of luminescence efficiency of ZnS: Cu nanocrystals by pH control. Mater. Sci. Eng., B. 2003, 103, 241-245. Lu, M., Lai, Y., Chen, G., Cai, Z. Matrix interference-free method for the analysis of small molecules by using negative ion laser desorption/ionization on graphene flakes. Anal. Chem. 2011, 83, 3161-3169. Makris, D. P., Rossiter, J. T. Comparison of quercetin and a non-orthohydroxy flavonol as antioxidants by competing in vitro oxidation reactions. J. Agric. Food Chem. 2001, 49, 3370-3377. Manzoor, K., Vadera, S. R., Kumar, N., Kutty, T. R. N. Multicolor electroluminescent devices using doped ZnS nanocrystals. Applied Physics. Letters. 2004, 84, 284-286. Matteo, V., Maurizio, G., Macilenti, G. Phthalate esters in freshwaters as markers of contamination sources-A site study in ITALY. Environ. Int. 1997, 23, 337-347. McCreery, R. L. Advanced carbon electrode materials for molecular electrochemistry. Chem. Rev. 2008, 108, 2646-2687. McLean, J. A., Stumpo, K. A., Russell, D. H. Size-selected (2-10 nm) gold nanoparticles for matrix assisted laser desorption ionization of peptides. J. Am. Chem. Soc. 2005, 127, 5304–5305. Middleton, E., Kandaswami, C. Effects of flavonoids on immune and inflammatory cell functions. Biochem. Pharmacol. 1992, 43, 1167-1179. Miller, N. J., Rice-Evans, C. A. Factors influencing the antioxidant activity determined by the ABTS.+ radical cation assay. Free Radic Res. 1997, 26, 195-199. Milovanoric, M., Jovanovic, P. J., Radovic, B. V., Vrbaski, Z. Antioxidant effects of flavonoids of Anthriscus sylvestris in Lard. J. Am. Oil Chem. Soc. 1996, 73, 773-776. Miwa, M., Nakajima, A., Fujishima, A., Hashimoto, K., Watanabe, T. Effects of the Surface Roughness on Sliding Angles of Water Droplets on Superhydrophobic Surfaces. Langmuir. 2000, 16, 5754-5760. Morozov, S. V., Novoselov, K. S., Katsnelson, M. I., Schedin, F., Elias, D. C., Jaszczak, J. A., Geim, A. K. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 2008, 100, 016602. Munson, M. S. B., Field, F. H. Chemical ionization mass spectrometry. J. Am. Chem. Soc. 1960, 88, 2621-2630. Nair, R. R., Blake, P., Grigorenko, A. N., Novoselov, K. S., Booth, T. J., Stauber, T., Peres, N. M., Geim, A. K. Fine structure constant defines visual transparency of graphene. Science 2008, 320, 1308. Nier, A. O. Electron Impact Mass Spectrometry. Rev. Sci. Instrum. 1947, 18, 398-411. Norris, D. J., Efros, A. L., Erwin, C. Doped nanocrystals. Science 2008, 319, 1776-1779. Norris, D. J., Efros, A. L., Rosen, M., Bawendi, M. G. Size dependence of exciton fine structure in CdSe quantum dots. Phys. Rev. 1996, 53, 16341-16354. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Katsnelson, M. I., Grigorieva, I. V., Dubonos, S. V., Firsov, A. A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200. Novoselov, K. S., Geim, A. K., Morzov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., Firsov, A. A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666-669. Ow, H., Larson, D. R., Srivastava, M., Baird, B. A., Webb, W. W., Wiesner, U. Bright and stable core-shell fluorescent silica nanoparticles. Nano Lett. 2005, 5, 113-117. Pan, C., Xu, S., Zhou, H., Fu, Y., Ye, M., Zou, H. Recent developments in methods and technology for analysis of biological samples by MALDI-TOF-MS. Anal. Bioanal. Chem. 2007, 387, 193-204. Pumera, M. Electrochemistry of graphene: new horizons for sensing and energy storage. Chem. Rec. 2009, 9, 211-223. Ren, S. F., Guo, Y. L. Oxidized carbon nanotubes as matrix for matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analysis of biomolecules. Rapid Commun. Mass Spectrom. 2005, 19, 255-260. Sameer, S., Prakash, A., Ghangrekar, A., Periasamy, N., Sarma, D. D. Emission properties of manganese-doped ZnS nanocrystals. J. Phys. Chem. B. 2005, 109, 1663-1668. Schuerenberg, M., Luebbert, C., Eickhoff, H., Kalkum, M., Lehrach, H., Nordhoff, E. Prestructured MALDI-MS Sample Supports. Anal. Chem. 2000, 72 , 3436–3442. Shastri, L. A., Kailasa, S. K., Wu, H. F. Cysteine-capped ZnSe quantum dots as affinity and accelerating probes for microwave enzymatic digestion of proteins via direct matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analysis. Rapid Commun. Mass Spectrom. 2009, 23, 2247-2252. Shrivas, K., Kailasa, S. K., Wu, H. F. Quantum dots-electrospray ionization mass spectrometry: 3-mercaptopropanic acid capped CdS quantum dots as accelerating and enrichment probes for microwave tryptic digestion of proteins. Rapid Commun. Mass Spectrom. 2009, 23, 3603-3607. Shrivas, K., Kailasa, S. K., Wu, H.F. Quantum dots laser desorption/ionization MS: multifunctional CdSe quantum dots as the matrix, concentrating probes and acceleration for microwave enzymatic digestion for peptide analysis and high resolution detection of proteins in a linear MALDI-TOF MS. Proteomics 2009, 9, 2656-2667. Sleno, L., Volmer, D. A. Some Fundamental and Technical Aspects of the Quantitative Analysis of Pharmaceutical Drugs by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. Rapid Commun. Mass Spectrom. 2005, 19, 1928–1936. Su, C. Y., Xu, Y., Zhang, W., Zhao, J., Tang, X., Tsai, C. H., Li, L. J. Electrical and Spectroscopic Characterizations of Ultra-Large Reduced Graphene Oxide Monolayers. Chem. Mater. 2009, 21, 5674–5680. Sun, B., Xie, W., Yi, G., Chen, D., Zhou, Y., Cheng, J. Microminiaturized immunoassays using quantum dots as fluorescent label by laser confocal scanning fluorescence detection. J. Immunol. Methods 2001, 249, 85–89. Sun, J., Zhuang, J., Guan, S., Yang, W. Synthesis of robust water-soluble ZnS: Mn/SiO2 core/shell nanoparticles. J. Nanopart. Res. 2008, 10, 653-658. Sunner, J., Dratz, E., Chen, Y. C. Graphite surface-assisted laser desorption/ionization time-of-flight mass spectrometry of peptides and proteins from liquid solutions. Anal. Chem. 1995, 67, 4335-4342. Tanaka, K., Waki, H., Ido, Y., Akita, S., Yoshida, Y., Yoshida, T. Protein and polymer analysis up to m/z 100000 by laser ionization. Rapid commun. Mass Spectrom. 1988, 2, 151-153. Tang, L. A. L., Wang, J., Loh, K. P. Graphene-Based SELDI Probe with Ultrahigh Extraction and Sensitivity for DNA Oligomer. J. Am. Chem. Soc. 2010, 132, 10976-10977. Thomson, J. J. Rays of Positive Electricity and Their Application to Chemical analysis. 1913, Longmans, London. Trnovsky, J., Letoureneau, R., Haggog, E., Boucher, W., Theoharides, T. C. Quercetin-induced expression of rat mast cell protease Ⅱ and accumulateion of secretory granules in rat basophilic leukaemia cell. Biochem. Pharmacol. 1993, 46, 2315-2316. Turner, A., Rawling, M. C. The behaviour of di-(2-ethylhexyl) phthalate in estuaries. Mar. Chem. 2000, 68, 203-217 Unsold, E., Hillenkamp, F., Nitsche, R. Mass group spectrometry of peptides and proteins by matrix-assisted ultraviolet laser desorption/ ionization in methods in enzymology. Analysis 1990, 4, 115-127. Warad, H., Sugunan, A., Thanachayanont, C., Dutta, J. ZnS: Mn2+ phosphors capped with chitosan. Microsc. Microanal. 2005, 11, 1912-1913. Wei, J., Buriak, J. M., Siuzdak, G. Desorption/Ionization Mass Spectrometry on Porous Silicon. Nature 1999, 399, 243-246. Xu, S. Y., Li, Y. F., Zou, H. F., Qiu, J. S., Guo, Z., Guo, B. C. Carbon nanotubes as assisted matrix for laser desorption/ionization time-of-flight mass spectrometry. Anal. Chem. 2003, 75, 6191-6195. Yamashita, M., Fenn J. B. Electrospray ion source: another variation on the free-jet theme. J. Phy. Chem. 1984, 88, 4451-4459. Yang, W., Ratinac, K. R., Ringer, S. P., Thordarson, P., Gooding, J. J., Braet, F. Carbon nanomaterials in biosensors: should you use nanotubes or graphene? Angew. Chem. Int. Ed. Engl. 2010, 49, 2114-2138. Yildizogle-Ari, N., Altan, V. M., Altinkurt, O., Ozturk, Y. Pharmacological effects of rutin. Phytotherapy Res. 1991, 5, 19-23. Yu, W. W., Chang, E., Drezek, R., Colvin, V. L. Water-soluble quantum dots for biomedical applications. Biochem. Biophys. Res. Commun. 2006, 348, 781-786. Zhang, H., Cha S., Yeung, E. S. Colloidal Graphite-Assisted Laser Desorption/ Ionization MS and MS(n) of Small Molecules. 2. Direct Profiling and MS Imaging of Small Metabolites from Fruits. Anal. Chem. 2007, 79, 6575–6584. Zhang, J., Dong, X., Cheng, X., Li, J., Wang, Y. Efficient Analysis of Non-Polar Environmental Contaminants by MALDI-TOF MS with Graphene as Matrix. J. Am. Soc. Mass. Spectrom. 2011, 22, 1294-1298. Zhang, Y., Tan, Y. W., Stormer, H. L., Kim, P. Experimental observation of the quantum Hall effect and Berry''s phase in graphene. Nature 2005, 438, 201–204. Zhou, X., Wei, Y., He, Q., Boey, F., Zhang, Q., Zhang, H. Reduced graphene oxide films used as matrix of MALDI-TOF-MS for detection of octachlorodibenzo-p-dioxin. Chem. Commun. (Camb). 2010, 46, 6974-6976. Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J. W., Potts, J. R., Ruoff, R. S. Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 2010, 22, 3906-3924.
摘要: 
基質輔助雷射脫附游離飛行時間式偵測質譜儀 (Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, MALDI-TOF MS) 為重要的分析儀器,對於許多的生物性分子如胜肽、蛋白質、脂質、類黃酮素等,提供極快速且高靈敏度的鑑定分析結果。然而,分析物與傳統有機基質在共結晶過程中,產生非均勻的共結晶,質譜訊號收集時必須盲目地尋找甜點區 (sweet spot),除了嚴重影響訊號再現性,也耗費許多時間。在本研究中,首次發現 ZnS-Mn-Cys 量子點可以輔助 CHCA 基質,形成肉眼直接辨識的甜點區,透過雷射脫附肉眼可辨識的甜點區,能獲得更好的分析物 (胜肽) 訊號,大幅加速 MALDI MS 分析速度,並提升分析靈敏度。量子點應用在不鏽鋼金屬盤時,加入量子點後可得到2~5倍的胜肽訊號強度;另外,將量子點結合微型晶片,得到的胜肽訊號比起對照組超過2倍的增強。相較於僅僅傳統有機基質在不鏽鋼金屬盤的結晶效果,加入 ZnS-Mn-Cys 量子點輔助 CHCA,可偵測到4倍以上的訊號強度;對於許多胜肽的偵測分析,本方法可提升分析物訊號強度並獲得更多的分析物訊息,提供更好的 MALDI MS 的鑑定分析結果。另一方面,傳統有機基質在低值荷比 (m/z) 區會有基質本身的訊號干擾,限制小分子的偵測,過去有許多的文獻是在探討無機材料作為基質於 MALDI-TOF 的小分子分析的改善,本次研究亦針對目前物理化學屆最熱門的材料新寵- 石墨烯 (graphene) 探究其分析小分子的能力。類黃酮屬植物性抗氧化劑,能有效的清除自由基,並有抗過敏、抗發炎及抗癌作用。本研究應用石墨烯對六種類黃酮進行偵測分析,利用兩種不同氧化程度的石墨烯: GO (graphene oxide) 及 rGO (reduced graphene oxide) 作為基質,進行 MALDI 分析。發現 GO 比起rGO,無論在訊號強度或是訊雜比都比 rGO 優異,表示利用 GO 偵測類黃酮可以提供更為靈敏的分析結果。因此,本研究嘗試應用 GO 於富含類黃酮的植物-月桃 (Alpinia zerumber) 觀察 GO 鑑定類黃酮的能力。並以 GO 分析塑化劑小分子,測得2種塑化劑,分別為 DINP 及 DIDP,偵測極限可達0.5 ppm。

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a rapid and sensitive tool for characterizing a wide variety of biomolecules. However, invisible “sweet spots” that form during heterogeneous co-crystallization minimize the analytical throughput and affect reproducibility of MALDI analysis. In this study, the visible “sweet spots” were generated on the metallic sample plate by quantum dots (QDs)-assisted MALDI analysis. The signals of standard peptide and phosphopeptide obtainded by QDs-assisted MALDI analysis were five- and three-fold higher than those obtained by conventional MALDI matrix, respectively. For peptide mixtures, the QDs-assisted MALDI analysis not only resulted in more intense peptide signals but also resulted in a greater number of peaks. In addition, the QDs-assisted MALDI analysis was successfully used to obtain the superior results of real samples. Moreover, we demonstrated that application of QDs to a radiate microstructure chip followed by MALDI analysis further enhanced the detection of peptide signals. Overall, we show that this method is a simple, sensitive, and high-throughput technique for peptide detection. Another limitation of MALDI is organic matrix interference in the low-mass region (m/z of < 500), thereby making the technique unsuitable for the analysis of small molecules. Many researchers were devoted to investigate the ability of those inorganic materials as matrix in MALDI-TOF. In this study, we get interested in graphene- the most popular material in Physic and Material study.Flavonoids, nature anti-oxidant compound generated from plants, which can be remove effectively free radicals and has the important roles of anti-allergy, anti-inflammation, and anti-cancer. Six kinds of standard flavonoids were also analyzed by graphene oxide (GO) and reduced graphene oxide (rGO) as matrix for MALDI analysis. The outstanding intensity and S/N ratio of signals were obtained from GO matrix than those from rGO. That indicated the more detection sensitivity was acquired by GO for flavonoids analysis. In addition, GO as matrix was used to identifiy the flavonoides which extracts from Alpinia zerumber. We also used GO as matrixto test the popular plasticizers - DINP and DIDP, the LOD are 0.5 ppm.
URI: http://hdl.handle.net/11455/22202
其他識別: U0005-0808201110010700
Appears in Collections:分子生物學研究所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.