Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/22220
標題: 水稻台農六十七號及其感鹽突變體SA0604、耐鹽突變體SM75於初期鹽害逆境之根部蛋白質體與磷酸蛋白質體分析
Root Comparative Proteomic Analysis of Initial Salt-stressed Rice Seedlings TNG67 and its Salt-sensitive Mutant SA0604, Salt-tolerant Mutant SM75
作者: 邱良韋
Chiou, Liang-Wei
關鍵字: Salt-tolerant Proteomics;鹽害逆境 蛋白質體
出版社: 分子生物學研究所
引用: 卓緯玄 (2007). "水稻台農67號突變品系萌芽期與秧苗期耐鹽性之生理分析." 國立中興大學生命科學研究所碩士學位論文. 徐裕凱 (2010). "水稻台農六十七號及其感鹽突變體SA0604、耐鹽突變體SM75於初期鹽害逆境之蛋白質體分析." 國立中興大學分子生物學研究所碩士學位論文. 陳玉如 (2003). "質譜技術與蛋白質體學." 醫藥基因生物技術教學資源中心. 陳官治、黃真生 (1984). "疊氮化鈉對水稻台農 67 號之誘變效應." 中華農業研究 33: 345-353. Alverdi, V., F. Di Pancrazio, et al. (2005). "Determination of protein phosphorylation sites by mass spectrometry: a novel electrospray-based method." Rapid Commun Mass Spectrom 19(22): 3343-3348. Ashihara, H. (2003). "Comparison of adenosine metabolism in leaves of several mangrove plants and a poplar species." Plant Physiology and Biochemistry 41(2): 133-139. Ben-Hayyim, G., Y. Gueta-Dahan, et al. (2001). "Preferential induction of a 9-lipoxygenase by salt in salt-tolerant cells of Citrus sinensis L. Osbeck." Planta 212(3): 367-375. Biemann, K. (1988). "Contributions of mass spectrometry to peptide and protein structure." Biomed Environ Mass Spectrom 16(1-12): 99-111. Boersema, P. J., S. Mohammed, et al. (2009). "Phosphopeptide fragmentation and analysis by mass spectrometry." J Mass Spectrom 44(6): 861-878. Bradford, M. M. (1976). "A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding." Anal Biochem 72: 248-254. Busk, P. K. and M. Pages (1998). "Regulation of abscisic acid-induced transcription." Plant Mol Biol 37(3): 425-435. Cleveland, D. W., S. G. Fischer, et al. (1977). "Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis." J Biol Chem 252(3): 1102-1106. Cramer, G. R., A. Ergul, et al. (2007). "Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles." Funct Integr Genomics 7(2): 111-134. Deng, X., J. Phillips, et al. (2002). "Characterization of five novel dehydration-responsive homeodomain leucine zipper genes from the resurrection plant Craterostigma plantagineum." Plant Mol Biol 49(6): 601-610. Feng, G., F. S. Zhang, et al. (2002). "Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots." Mycorrhiza 12(4): 185-190. Fenn, J. B., M. Mann, et al. (1989). "Electrospray ionization for mass spectrometry of large biomolecules." Science 246(4926): 64-71. Gronborg, M., T. Z. Kristiansen, et al. (2002). "A mass spectrometry-based proteomic approach for identification of serine/threonine-phosphorylated proteins by enrichment with phospho-specific antibodies: identification of a novel protein, Frigg, as a protein kinase A substrate." Mol Cell Proteomics 1(7): 517-527. Hamilton, C. A., A. G. Good, et al. (2001). "Induction of vacuolar ATPase and mitochondrial ATP synthase by aluminum in an aluminum-resistant cultivar of wheat." Plant Physiol 125(4): 2068-2077. Hasegawa, P. M., R. A. Bressan, et al. (2000). "Plant Cellular and Molecular Responses to High Salinity." Annu Rev Plant Physiol Plant Mol Biol 51: 463-499. Henzel, W. J., T. M. Billeci, et al. (1993). "Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases." Proc Natl Acad Sci U S A 90(11): 5011-5015. Hunter, T. (2000). "Signaling--2000 and beyond." Cell 100(1): 113-127. Jo, S. H., S. H. Lee, et al. (2002). "Cellular defense against UVB-induced phototoxicity by cytosolic NADP(+)-dependent isocitrate dehydrogenase." Biochemical and biophysical research communications 292(2): 542-549. Karas, M. and F. Hillenkamp (1988). "Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons." Anal Chem 60(20): 2299-2301. Kawasaki, S., C. Borchert, et al. (2001). "Gene expression profiles during the initial phase of salt stress in rice." Plant Cell 13(4): 889-905. Kim, D.-W., R. Rakwal, et al. (2005). "A hydroponic rice seedling culture model system for investigating proteome of salt stress in rice leaf." Electrophoresis 26(23): 4521-4539. Kreps, J. A. (2002). "Transcriptome Changes for Arabidopsis in Response to Salt, Osmotic, and Cold Stress." Plant Physiology 130(4): 2129-2141. Lander, E. S., L. M. Linton, et al. (2001). "Initial sequencing and analysis of the human genome." Nature 409(6822): 860-921. Laugesen, S., E. Messinese, et al. (2006). "Phosphoproteins analysis in plants: a proteomic approach." Phytochemistry 67(20): 2208-2214. Lin, H., Y. Yang, et al. (2009). "Phosphorylation of SOS3-LIKE CALCIUM BINDING PROTEIN8 by SOS2 protein kinase stabilizes their protein complex and regulates salt tolerance in Arabidopsis." Plant Cell 21(5): 1607-1619. Mahajan, S. and N. Tuteja (2005). "Cold, salinity and drought stresses: an overview." Arch Biochem Biophys 444(2): 139-158. McLachlin, D. T. and B. T. Chait (2001). "Analysis of phosphorylated proteins and peptides by mass spectrometry." Curr Opin Chem Biol 5(5): 591-602. Neet, K. and T. Hunter (1996). "Vertebrate non-receptor protein-tyrosine kinase families." Genes Cells 1(2): 147-169. Niu, G. H. and D. S. Rodriguez (2006). "Relative salt tolerance of selected herbaceous perennials and groundcovers." Scientia Horticulturae 110(4): 352-358. Ono, K., T. Hibino, et al. (2001). "Overexpression of DnaK from a halotolerant cyanobacterium Aphanothece halophytica enhances the high-temperatue tolerance of tobacco during germination and early growth." Plant Sci 160(3): 455-461. Pandey, A., A. V. Podtelejnikov, et al. (2000). "Analysis of receptor signaling pathways by mass spectrometry: identification of vav-2 as a substrate of the epidermal and platelet-derived growth factor receptors." Proc Natl Acad Sci U S A 97(1): 179-184. Peterson, T. A., R. H. Nieman, et al. (1987). "Nucleotide Metabolism in Salt-Stressed Zea mays L. Root Tips: I. Adenine and Uridine Nucleotides." Plant Physiol 85(4): 984-989. Purushotham, K. R., T. Zelles, et al. (1991). "Role of protein phosphorylation and inositol phospholipid turnover in rat parotid gland proliferation." Mol Cell Biochem 102(1): 19-33. Riechmann, J. L., J. Heard, et al. (2000). "Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes." Science 290(5499): 2105-2110. Roepstorff, P. and J. Fohlman (1984). "Proposal for a common nomenclature for sequence ions in mass spectra of peptides." Biomed Mass Spectrom 11(11): 601. Schroeder, J. I., J. M. Kwak, et al. (2001). "Guard cell abscisic acid signalling and engineering drought hardiness in plants." Nature 410(6826): 327-330. Seki, M., M. Narusaka, et al. (2002). "Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray." Plant J 31(3): 279-292. Shinozaki, K., K. Yamaguchi-Shinozaki, et al. (2003). "Regulatory network of gene expression in the drought and cold stress responses." Curr Opin Plant Biol 6(5): 410-417. Stasolla, C., R. Katahira, et al. (2003). "Purine and pyrimidine nucleotide metabolism in higher plants." J Plant Physiol 160(11): 1271-1295. Tamoi, M., H. Kurotaki, et al. (2007). "Beta-1,4-glucanase-like protein from the cyanobacterium Synechocystis PCC6803 is a beta-1,3-1,4-glucanase and functions in salt stress tolerance." The Biochemical journal 405(1): 139-146. Tesfaye, M., S. J. Temple, et al. (2001). "Overexpression of malate dehydrogenase in transgenic alfalfa enhances organic acid synthesis and confers tolerance to aluminum." Plant Physiol 127(4): 1836-1844. Tracy, F. E., M. Gilliham, et al. (2008). "NaCl-induced changes in cytosolic free Ca2+ in Arabidopsis thaliana are heterogeneous and modified by external ionic composition." Plant, cell & environment 31(8): 1063-1073. Veeranagamallaiah, G., G. Jyothsnakumari, et al. (2008). "Proteomic analysis of salt stress responses in foxtail millet (Setaria italica L. cv. Prasad) seedlings." Plant Science 175(5): 631-641. Venter, J. C., M. D. Adams, et al. (2001). "The sequence of the human genome." Science 291(5507): 1304-1351. Vogl, T., J. Roth, et al. (1999). "Calcium-induced noncovalently linked tetramers of MRP8 and MRP14 detected by ultraviolet matrix-assisted laser desorption/ionization mass spectrometry." J Am Soc Mass Spectrom 10(11): 1124-1130. Waskiewicz, A. J. and J. A. Cooper (1995). "Mitogen and stress response pathways: MAP kinase cascades and phosphatase regulation in mammals and yeast." Curr Opin Cell Biol 7(6): 798-805. Wettenhall, R. E., R. H. Aebersold, et al. (1991). "Solid-phase sequencing of 32P-labeled phosphopeptides at picomole and subpicomole levels." Methods Enzymol 201: 186-199. Wolschin, F., S. Wienkoop, et al. (2005). "Enrichment of phosphorylated proteins and peptides from complex mixtures using metal oxide/hydroxide affinity chromatography (MOAC)." Proteomics 5(17): 4389-4397. Yan, S., Z. Tang, et al. (2005). "Proteomic analysis of salt stress-responsive proteins in rice root." Proteomics 5(1): 235-244. Yokoi S, B. R., Hasegawa PM. (2002). "Salt stress tolerance of plants." JIRCAS Working Report.: 25-33. Zhang, L., L. H. Tian, et al. (2009). "Identification of an apoplastic protein involved in the initial phase of salt stress response in rice root by two-dimensional electrophoresis." Plant Physiol 149(2): 916-928. Zhou, S., R. Sauve, et al. (2009). "Proteome changes induced by aluminium stress in tomato roots." J Exp Bot 60(6): 1849-1857. Zolnierowicz, S. and M. Bollen (2000). "Protein phosphorylation and protein phosphatases. De Panne, Belgium, September 19-24, 1999." EMBO J 19(4): 483-488.
摘要: 
Rice (Oryza sativa L.) is the dominant staple crop, providing more than 30% of the calories consumed in Aria. Rice growth and productivity are limited by the biotic and abiotic. Salt stress is one of the major abiotic stresses in agriculture worldwide, It is estimated that salinity stress may affect half of all arable lands by 2050; hence it is important to understand plant tolerance to salinity that is fundamental to develop stress tolerant crops.Protein phosphorylation is one of the most ubiquitous post-translational modifications and regulates many physiological events, including cell growth, proliferation, differentiation, and apoptosis. Phosphorylation is responded by abscisic acid, drought and salinity; Therfore, efficient analysis of phosphoprotein will provide important information for their specific roles of salt tolerance.
In this study, we aim to elucidate the response to initial salt stress in rice by using proteomics method. The chosen rice strains TNG67, salt-tolerant mutant SM75 and salt-sensitive strain SA0604 derived from TNG67 by sodium azide (NaN3) mutagenesis were valuable for this research of plant salt-responsive mechanism. 19 days-old rice seedlings of three strains were treatrd with 250 mM NaCl for 0.5 h. Total proteins of roots were extracted for comparative proteomics analysis via 2D electrophoresis and LC-MS/MS analysis. For phosphproteomics analysis, we enriched phosphoprotein by TALON® PMAC Phosphoprotein Enrichment Kit and phosphopeptide by PHOS-TRAP™ 24PHOSPHOPEPTIDE ENRICHMENT KIT, respectively. Finally, digestied peptides were identified vai LC-MS/MS analysis. The result showed 24 differentially expressed proteins spots of root proteome in TNG67, 41 in SM75 and 44 in SA0604. Several identified proteins involve in passway of ATP synthesis, nucleotide biosynthesis and salvage, oxidate metabolism, redox homeostasis, protein refolding. These studies may be helpful in elucidating the machalisms of salt tolerance in plant.

水稻 (Oryza sativa L.)為世界上最重要的糧食作物之一。水稻在生長過程中經常會受到許多生物性或非生物性逆境的壓力而使產量下降,而鹽害為其中重要非生物性逆境之一。根據資料顯示,在土壤鹽化日趨嚴重的影響下,預估在 2050 年世界上有效可耕地將僅剩現今的一半,因此深入了解水稻於鹽逆境時之耐鹽反應機制並應用於選殖具耐鹽特性之水稻品系是非常重要的。在另一方面,磷酸化為一項極重要的後轉譯修飾,其調控細胞包含生長、增殖、分化、凋亡等許多生理現象,而磷酸化修飾對於離層酸 (abscisic acid)、乾旱、鹽害都有相當的反應,於是針對磷酸化蛋白質的分析將有助於了解植物對抗鹽逆境的機制。
在本實驗中,將從蛋白質體的角度去探討根部蛋白質在植物體內對抗環境鹽害壓力下的反應,採用水稻品種台農 67 號 (TNG67) 以及其感鹽突變體 (SA0604)、耐鹽突變體 (SM75) 三個品系,藉由不同耐鹽程度的植物往往是拿來研究鹽逆境反應機制的最佳材料。將生長至三葉齡的水稻幼苗以以250 mM 之氯化鈉處理0.5小時,再將萃取的葉部及根部蛋白質以二維膠體電泳分析,並以比對軟體分析於初期鹽逆境下是否具有表現量變化之蛋白質點。而在磷酸化修飾的探討,則利用商品TALON® PMAC Phosphoprotein Enrichment Kit、PHOS-TRAP™ 24PHOSPHOPEPTIDE ENRICHMENT KIT 分別純化磷酸化蛋白及胜肽,再利用膠體電泳分離,最後經由胰蛋白酶進行膠內蛋白質水解後再以 LC-MS/MS 分析,並搭配蛋白質資料庫比對鑑定蛋白質身份。
結果發現總共在TNG67鑑定到24個差異蛋白質,在SM75和SA0604分別有41個和44個。其鑑定的結果中,有若干蛋白質在三種不同耐鹽程度的水稻植株中,有不同的消長現象,此些蛋白質所參與的路徑可能決定了水稻生理上不同耐鹽程度的關鍵,包含了能量合成、核酸合成與回收、平衡氧化還原、蛋白質修復等等生化路徑相關酵素。希望此研究成果有利於未來植物生理之研究,甚至可以提供基因改造策略以增進水稻於鹽害逆境下耐受性。
URI: http://hdl.handle.net/11455/22220
其他識別: U0005-1808201117135800
Appears in Collections:分子生物學研究所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.