Please use this identifier to cite or link to this item:
標題: 噬菌體 P1201之 ant4 基因在Corynebacterium glutamicum NCHU 87078 之生理角色及Proteus mirabilis BCRC 10725 之離胺酸消旋酵素之生化特性
Physiological role of corynephage P1201 ant4 gene in Corynebacterium glutamicum NCHU 87078 and biochemical characterization of a novel lysine racemase from Proteus mirabilis BCRC 10725
作者: 管宜家
Kuan, Yi-Chia
關鍵字: Corynebacterium glutamicum;基因體;ant4;載體
出版社: 分子生物學研究所
引用: 參 考 文 獻 1. Baumbach, J., K. Brinkrolf, L. F Czaja, S.Rahmann, and A. Tauch. 2006. CoryneRegNet: An ontology-based data warehouse of corynebacterial transcription factors and regulatory networks. BMC Genomics 7:24-35. 2. Bideshi, D. K., S. Renault, K. Stasiak, B. A. Federici, and Y. Bigot. 2003. Phylogenetic analysis and possible function of bro-like genes, a multigene family widespread among large double-stranded DNA viruses of invertebrates and bacteria. J Gen Virol 84:2531-44. 3. Blombach, B., S. Hans, B. Bathe, and B. J. Eikmanns. 2009. Acetohydroxyacid synthase, a novel target for improvement of L-lysine production by Corynebacterium glutamicum. Appl Environ Microbiol 75:419-27. 4. Bukovska, G., L. Klucar, C. Vlcek, J. Adamovic, J. Turna, and J. Timko. 2006. Complete nucleotide sequence and genome analysis of bacteriophage BFK20--a lytic phage of the industrial producer Brevibacterium flavum. Virology 348:57-71. 5. Campbell, A. 2003. The future of bacteriophage biology. Nat Rev Genet 4:471-7. 6. Chen, C. L., T. Y. Pan, S. C. Kan, Y. C. Kuan, L. Y. Hong, K. R. Chiu, C. S. Sheu, J. S. Yang, W. H. Hsu, and H. Y. Hu. 2008. Genome sequence of the lytic bacteriophage P1201 from Corynebacterium glutamicum NCHU 87078: evolutionary relationships to phages from Corynebacterineae. Virology 378:226-32. 7. Clerget, M., and F. Boccard. 1996. Phage HK022 Roi protein inhibits phage lytic growth in Escherichia coli integration host factor mutants. J Bacteriol 178:4077-83. 8. Cramer, A., R. Gerstmeir, S. Schaffer, M. Bott, and B. J. Eikmanns. 2006. Identification of RamA, a novel LuxR-type transcriptional regulator of genes involved in acetate metabolism of Corynebacterium glutamicum. J. Bacteriol. 188:2554–2567. 9. Dame, R. T., C. Wyman, R. Wurm, R. Wagner, and N. Goosen. 2002. Structural basis for H-NS-mediated trapping of RNA polymerase in the open initiation complex at the rrnB P1. J Biol Chem 277:2146-50. 10. Dekker, J., K. Rippe, M. Dekker, and N. Kleckner. 2002. Capturing chromosome conformation. Science 295:1306-11. 11. Dudoit, S., Y. H. Yang, M. J. Callow and , and T. P. Speed. 2002. Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments. Stat. Sin. 12:119-139. 12. Engels, V., and V. F. Wendisch. 2007. The DeoR-type regulator SugR represses expression of ptsG in Corynebacterium glutamicum. J. Bacteriol. 189:2955–2966. 13. Fontanesi, F., I. C. Soto, D. Horn, and A. Barrientos. 2006. Assembly of mitochondrial cytochrome c-oxidase, a complicated and highly regulated cellular process. Am J Physiol Cell Physiol 291:C1129-47. 14. Gerstmeir, R., A. Cramer, P. Dangel, S. Schaffer, and B. J. Eikmanns. 2004. RamB, a novel transcriptional regulator of genes involved in acetate metabolism of Corynebacterium glutamicum. J Bacteriol 186:2798-809. 15. Guzman, L. M., D. Belin, M. J. Carson, and J. Beckwith. 1995. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 177:4121-30. 16. Hommais, F., E. Krin, C. Laurent-Winter, O. Soutourina, A. Malpertuy, J. P. Le Caer, A. Danchin, and P. Bertin. 2001. Large-scale monitoring of pleiotropic regulation of gene expression by the prokaryotic nucleoid-associated protein, H-NS. Mol Microbiol 40:20-36. 17. Iyer, L. M., E. V. Koonin, and L. Aravind. 2002. Extensive domain shuffling in transcription regulators of DNA viruses and implications for the origin of fungal APSES transcription factors. Genome Biol. 3:1-11. 18. Jochmann, N., A. K. Kurze, L. F. Czaja, K. Brinkrolf, I. Brune, A. T. Huser, N. Hansmeier, A. Puhler, I. Borovok, and A. Tauch. 2009. Genetic makeup of the Corynebacterium glutamicum LexA regulon deduced from comparative transcriptomics and in vitro DNA band shift assays. Microbiology 155:1459-77. 19. Kang, W., M. Kurihara, and S. Matsumoto. 2006. The BRO proteins of Bombyx mori nucleopolyhedrovirus are nucleocytoplasmic shuttling proteins that utilize the CRM1-mediated nuclear export pathway. Virology 350:184-91. 20. Kang, W., M. Suzuki, E. Zemskov, K. Okano, and S. Maeda. . 1999. Characterization of Baculovirus Repeated Open ReadingFrames (bro) in Bombyx mori Nucleopolyhedrovirus. J. Virol. 73:10339–10345. 21. Kronemeyer, W., N. Peekhaus, R. Kra‥mer, H. Sahm, and L. Eggeling. 1995. Structure of the gluABCD cluster encoding the glutamate uptake system of Corynebacterium glutamicum. .J. Bacteriol. 177:1152-1158. 22. Laemmli, U. K. 1970. Cleavage of structure proteins during the assembly of the head of bacteriophage T4. Nature 227:680-685. 23. Le Grice, S. F. J., and F. Gruninger-leitch. 1990. Rapid purification of homodimer and heterodimer HIV-1 reverse transcriptase by metal chelate affinity chromatography. Eur. J. Biochem. 187:307-314. 24. Lee, S. M., J. Y. Lee, K. J. Park, J. S. Park, U. H. Ha, Y. Kim, and H. S. Lee. 2010. The regulator RamA influences cmytA transcription and cell morphology of Corynebacterium ammoniagenes. Curr Microbiol 61:92-100. 25. Leuchtenberger, W. 1996. Amino acids: technical production and use In H. J. Rehm and g. Reed (ed.). In Biotechnology. VCH publishers Winheim, Germany.:P. 455-502. 26. Lindley, H. D. a. M. C.-B. a. N. D. 1997. Simultaneous consumption of glucose and fructose from sugar mixtures during batch growth of Corynebacterium glutamicum. Appl Microbiol Biotechnol 47:600-603. 27. Lopez-Rubio, J. J., M. Elias-Arnanz, S. Padmanabhan, and F. J. Murillo. 2002. A repressor-antirepressor pair links two loci controlling light-induced carotenogenesis in Myxococcus xanthus. J Biol Chem 277:7262-70. 28. Mardanov, A. V., and N. V. Ravin. 2007. The antirepressor needed for induction of linear plasmid-prophage N15 belongs to the SOS regulon. J Bacteriol 189:6333-8. 29. McGrath, S., G. F. Fitzgerald, and D. van Sinderen. 2004. The impact of bacteriophage genomics. Curr Opin Biotechnol 15:94-9. 30. Miller, E. S., E. Kutter, G. Mosig, F. Arisaka, T. Kunisawa, and W. Ruger. 2003. Bacteriophage T4 genome. Microbiol Mol Biol Rev 67:86-156, table of contents. 31. Mortz, E., T. N. Krogh, H. Vorum, and A. Gorg. 2001. Improved silver staining protocols for high sensitivity protein identification using matrix-assisted laser desorption/ionization-time of flight analysis. Proteomics 1:1359-1363. 32. Radmacher, E., L. J. Alderwick, G. S. Besra, A. K. Brown, K. J. Gibson, H. Sahm, and L. Eggeling. 2005. Two functional FAS-I type fatty acid synthases in Corynebacterium glutamicum. Microbiology 151:2421-7. 33. Ramirez-Arcos, S., M. Liao, S. Marthaler, M. Rigden, and J. A. Dillon. 2005. Enterococcus faecalis divIVA: an essential gene involved in cell division, cell growth and chromosome segregation. Microbiology 151:1381-93. 34. Ravantti, J. J., T. M. Ruokoranta, A. M. Alapuranen, and D. H. Bamford. 2008. Global transcriptional responses of Pseudomonas aeruginosa to phage PRR1 infection. J Virol 82:2324-9. 35. Renzoni, D., D. Esposito, M. Pfuhl, J. C. Hinton, C. F. Higgins, P. C. Driscoll, and J. E. Ladbury. 2001. Structural characterization of the N-terminal oligomerization domain of the bacterial chromatin-structuring protein, H-NS. J Mol Biol 306:1127-37. 36. Rimsky, S., F. Zuber, M. Buckle, and H. Buc. 2001. A molecular mechanism for the repression of transcription by the H-NS protein. Mol. Microbiol. 42:1311-1323. 37. Sambrook, J., and D. W. Russel. 2001. A Laboratory Manual. Cold Spring Harbor Laboratory Publishers, New York. Molecular Cloning. 38. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a labratory manual. Cold Spring Harbor Labratory, N. Y. 39. Sergueev, K., D. Yu, S. Austin, and D. Court. 2001. Cell toxicity caused by products of the p(L) operon of bacteriophage lambda. Gene 272:227-35. 40. Shapiro, O. H., and A. Kushmaro. Bacteriophage ecology in environmental biotechnology processes. Curr Opin Biotechnol 22:449-55. 41. Shearwin, K. E., A. M. Brumby, and J. B. Egan. 1998. The Tum protein of coliphage 186 is an antirepressor. J Biol Chem 273:5708-15. 42. Smoot, J. C., K. D. Barbian, J. J. Van Gompel, L. M. Smoot, M. S. Chaussee, G. L. Sylva, D. E. Sturdevant, S. M. Ricklefs, S. F. Porcella, L. D. Parkins, S. B. Beres, D. S. Campbell, T. M. Smith, Q. Zhang, V. Kapur, J. A. Daly, L. G. Veasy, and J. M. Musser. 2002. Genome sequence and comparative microarray analysis of serotype M18 group A Streptococcus strains associated with acute rheumatic fever outbreaks. Proc Natl Acad Sci U S A 99:4668-73. 43. Smyth, C. P., T. Lundback, D. Renzoni, G. Siligardi, R. Beavil, M. Layton, J. M. Sidebotham, J. C. Hinton, P. C. Driscoll, C. F. Higgins, and J. E. Ladbury. 2000. Oligomerization of the chromatin-structuring protein H-NS. Mol Microbiol 36:962-72. 44. Spurio, R., M. Falconi, A. Brandi, C. L. Pon, and C. O. Gualerzi. 1997. The oligomeric structure of nucleoid protein H-NS is necessary for recognition of intrinsically curved DNA and for DNA bending. EMBO J 16:1795-805. 45. Stansen, C., D. Uy, S. Delaunay, L. Eggeling, J. L. Goergen, and V. F. Wendisch. 2005. Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production. Appl Environ Microbiol 71:5920-8. 46. Toyoda, K., H. Teramoto, M. Inui, and H. Yukawa. 2008. Expression of the gapA gene encoding glyceraldehyde-3-phosphate dehydrogenase of Corynebacterium glutamicum is regulated by the global regulator SugR. Appl. Microbiol. Biotechnol. 81:291–301. 47. Toyoda, K., H. Teramoto, M. Inui, and H. Yukawa. 2009. Molecular mechanism of SugR-mediated sugar-dependent expression of the ldhA gene encoding L-lactate dehydrogenase in Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 83:315–327. 48. Ueguchi, C., C. Seto, T. Suzuki, and T. Mizuno. 1997. Clarification of the dimerization domain and its functional significance for the Escherichia coli nucleoid protein H-NS. J Mol Biol 274:145-51. 49. VF., W. 2006. Genetic egulation of Corynebacterium glutamicum metabolism. J Microbiol Biotechnol 16:999-1009. 50. Weinbauer, M. G. 2004. Ecology of prokaryotic viruses. FEMS Microbiol Rev 28:127-81. 51. Wendisch, V. F., A. A. de Graaf, H. Sahm, and B. J. Eikmanns. 2000. Quantitative determination of metabolic fluxes during coutilization of two carbon sources: comparative analyses with Corynebacterium glutamicum during growth on acetate and/or glucose. J Bacteriol 182:3088-96. 52. Zemskov, E. A., W. Kang, and S. Maeda. 2000. Evidence for nucleic acid binding ability and nucleosome association of Bombyx mori nucleopolyhedrovirus BRO proteins. J Virol 74:6784-9. 53. 許文輝, 蔡. 廖. 1992. 食品工業發展研究所 研究報告 第 674號. 54. 黃炳綬. 2010. 噬菌體P1201的 Ant4蛋白與Corynebacterium glutamicum NCHU87078 蛋白之間的交互作用. [Insert Country of Publication]: 台灣 55. 潘姿穎. 2002. 開發 Corynebacterium glutamicum 之表現載體俾應用於外源基因之大量表現。 [Insert Country of Publication]: 台灣
(1)Lytic phage P1201 was isolated from Corynebacterium glutamicum NCHU 87078 that was infected by phage during an industrial fermentation for glutamic acid production. P1201 genome contains an ant4 gene, its biological function remains unclear. The Ant4 protein contains two conserved domains: N terminal bro-N domain and C-terminal kilA-C domain. The full-length and truncated ant4 genes, designated ant4, bro-N domain and kilA-C domain were cloned and expressed in Escherichia coli NovaBlue and C. glutamicum. Two Ant4 proteins with different N-terminus were expressed in E. coli and C. glutamicum harboring ant4 gene. Growth inhibition and cell death were observed for the C. glutamicum and E. coli cells expressing ant4 gene. Realtime-PCR and Western blot analysis indicated that the expression of ant4 gene occurs in the early stage of phage infection. Microarray analysis the expression levels of revealed that 218 genes were significantly changed, when the ant4 gene was expressed in C. glutamicum. The transcription of ion transportation related genes was increased in the cells expressing ant4, while the expression level of genes related to energy generation and protein translation were decreased. The data from realtime-PCR assay indicated that Ant4 inhibited the expression of the genes related to carbohydrate and fatty acid metabolism, including aceA, aceB, ilvB, fas-IA and fas-IB. Pull-down experiments and immunoprecipitation assay revealed Ant4 interacted with transcriptional regulators including SugR, RamA, RamB, and LexA of C. glutamicum NCHU 87078, and the C-terminal kilA-C domain is required for protein-protein interaction. EMSA indicated that Ant4 could enhance the binding of RamA and LexA to DNA fragment containing their specific binding sites. Ant4 could facililate formation of loop comformation for ace-P. Uniformly and non-specifically binding of Ant4 to the aceA-P DNA fragment was demonstrated using atomic force microscopy. However, specific binding of Ant4 to the RamA binding site coulded be found in the presence of the tramscriptional regulator RamA. Our data suggested the Ant4 protein might be a global transcriptional regulator after corynephage P1201 infection to suppress the metabolism in host.

(2)A lysine racemase gene (lyr) that consisted of an open reading frame of 1224-bp and encoded a protein with a calculated molecular mass of 45 kDa was cloned from the Proteus mirabilis BCRC10725 and expressed in Escherichia coli BL21(DE3). The purified His6-tagged Lyr was most active towards lysine, exhibiting a specific activity of 2828±97 U/mg. This enzyme also racemized arginine with a specific activity of 568±28 U/mg but not other amino acids. The optimal conditions for Lyr activity to L-lysine were pH 8.0-9.0 and 50˚C. The racemization activity of Lyr was completely inhibited by 5 mM hydroxylamine and was partially restored by the addition of pyridoxal 5'-phosphate. The S394 residue of Lyr was subjected to site-directed mutagenesis. The arginine racemization activities of the S394Y, S394N, S394C and S394T variant proteins were increased by 1.5-1.8 fold compared to the wild-type Lyr, indicating that the S394 residue played a crucial role in determining the preference of Lyr to lysine and arginine.

(1)利用 Corynebacterium glutamicum NCHU 87078 進行味精醱酵時,有時會發生敗槽,前人研究中由敗槽醱酵液內分離出溶裂性噬菌體 corynephage P1201,其基因體中的 ant4 基因之生理角色,仍無文獻報導。Ant4 具有兩個 domain,N 端 bro-N domain 屬於 bro family,可能為結合 DNA 的 domain,而 C 端則比對到 prophage 的 kilA-C domain。從 C. glutamicum NCHU 87078 中選殖出 ant4 基因、bro-N domain 及 kilA-C domain DNA 片段,分別將三個 DNA 片段構築於表現載體上,進行大量表現並純化蛋白,發現 ant4 於 C. glutamicum 或 E. col 菌體內表現時,會轉譯出兩種 N 端有差異的蛋白質,並造成 C. glutamicum 和 E. coli 停止生長。以 realtime-PCR 及 Western blot 偵測 corynephage P1201 感染 C. glutamicum NCHU 87078 時 ant4 的表現情形,發現 ant4 屬於病毒感染的早期基因。利用核酸微矩陣 (microarray) 分析表現 ant4 基因的 C. glutamicum NCHU 87078,發現有 218 個基因和對照組有顯著差異。其中與離子輸送相關之基因在ant4基因表現時,表現量上升,而大部分與能量產生及轉譯有關之基因則表現量下降。進一步以 realtime-PCR 分析確認,發現 RamA 所調控之酒精代謝及醋酸代謝之相關基因 (aceA及aceB) 表現量下降,與支鏈型胺基酸 (ilvB) 及脂肪酸合成相關的基因 (fas-IA及fas-IB) 之表現量也下降,推測前述基因表現之下降,可能與 Ant4 抑制 C. glutamicum NCHU 87078 的生長有關。利用 Pull-down assay 及免疫沉澱法分析蛋白質之交互作用,發現 Ant4 會與 C. glutamicum NCHU 87078 的轉錄調控因子: SugR 、 RamA 、 RamB 及 LexA 產生交互作用,並確認 Ant4 蛋白 C 端的 kilA-C domain 為參與蛋白質交互作用的主要區域,而 N 端的bro-N domain 為與 DNA 結合的主要區域。利用 EMSA 分析結果也顯示, Ant4 會促進 RamA 及 LexA 與其專一性 DNA 結合的能力。以原子力顯微鏡觀察,發現 Ant4 單獨存在時會非專一性的結合在整條 aceA-P DNA 片段上。但是在 RamA 轉錄調控因子存在下,Ant4 會藉由與 RamA 的相互作用形成一個 Ant4/RamA/aceA-P 的聚合結構,結合在 RamA 的啟動子上,使 aceA 基因無法進行轉錄。綜上所述,Ant4 可能扮演著 corynephage P1201 感染宿主後調控代謝基因表現的廣泛性轉錄調節者 (global transcriptional regulator)。

(2)從Proteus mirabilis BCRC 10725中選殖一完整的ORF並將其命名為lyr,此基因全長為1224 bp,可以轉譯出預估分子量為45 kDa的蛋白質。將lyr基因於E. coli BL21(DE3)中表現,純化帶有His6-tag的Lyr酵素,可催化lysine 的消旋反應,比活性為2828 ± 97 U/mg;此酵素對arginine 也具有催化的活性,其比活性為568 ±28 U/mg,但對於其他胺基酸則不具有消旋作用。Lyr的最適反應pH及溫度分別為8.0-9.0 及50 ℃,其活性不受離子的影響。將Lyr以hydroxylamine處理後會失去lysine racemase活性,再添加pyridoxal 5`-phosphate (PLP) 後可恢復部份活性,證實其反應需要PLP。將Lyr第394個胺基酸的serine做定點突變,發現S394Y、 S394N、 S394C及S394T 對arginine的轉換率可提升約1.5-1.8倍,由結果可知S394在Lyr對lysine 及arginine之基質選擇性上扮演著重要角色。
其他識別: U0005-2109201112584900
Appears in Collections:分子生物學研究所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.