Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2227
標題: 微影製程駐波效應之改善研究
Standing Wave Effect in Photolithography Improvement
作者: 林志翰
Lin, Chih-Han
關鍵字: BARC;底部抗反射層;Post Exposure Bake;standing wave effect;曝光後烘烤;駐波效應
出版社: 機械工程學系所
引用: [1] 莊達人,“VLSI 製造技術”,高立出版社,2002。 [2] 龍文安,“積體電路微影製程”,初版,高立出版社,1998。 [3] 羅正忠、張鼎張譯,“半導體製程技術導論”,台北市,台灣培生教育出版股份有限公司,2002。 [4] 蕭宏,“半導體製程技術導論”,歐亞書局有限公司,2001。 [5] James R. Sheats and Bruce W. Smith,” Microlithography Science and Technology,” (Marcel Dekker, New York, 1998) [6] Munirathna Padmanaban, Shuji Ding, Stanly A. Ficner, Wen-Bin Kang, Dinesh N. Khanna, and Ralph R. Dammel, “Bottom antireflective coatings for ArF, KrF, and I-line applications: a comparison of theory, design, and lithographic aspects,” Proc. of SPIE, Vol. 3678 (1999) [7] Johannes van Wingerden, “Optimisation of substrate reflectivity, resist thickness and resist absorption for CD control and resolution,” Proc. of SPIE, Vol. 3679 (1999) [8] Fung Allen, Mann Binder, Eakin Ron, Silvestre Pierre, Williams Brad, Miyake Jason and Takano Yusuke, “Top antireflective coating process for deep-UV lithography,” Proc. of SPIE, Vol. 3678 (1999) [9] Alexander Kathryne E., Hargreaves John S. and Reihani Mehran,“On the processing of I-line positive resists with a top anti-reflective coating,”Microelectronic Eng. Vol. 25 No. 1 (1994) [10] Byung-Hyuk Jun, Sang-Soo Han, Kyong-Sub Kim, Joon-Sung Lee, Zhong-Tao Jiang, Byeong-Soo Bae, Kwangsoo No, Dong-Wan Kim,Ho-Young Kang, and Young-Bum Koh, “Titanium oxide film for the bottom antireflective layer in deep ultraviolet lithography,”Applied Optics, Vol.36 (1997) [11] Shuo-Yen Chou, Chien-Ming Wang, Chin-Chiu Hsia, Li-Jui Chen, Gue-Wuu Hwang, Shyh-Dar Lee, and Jen-Chung Lou, “Anti-reflection strategies for sub-0.18μm dual damascene structure patterning on KrF 248 nm lithography,” Proc. of SPIE, Vol. 3679 (1999) [12] Stephen Alan, Dean Kim and Byers Jeffrey, “Antireflective coating strategies for 193-nm lithography,” Proc. of SPIE, Vol. 3678 (1999) [13] Satoko Nakaoka, Hisashi Watanabe, and Yoshimitsu Okuda, “Comparison of CD variation between organic and inorganic bottom anti-reflective coating on topographic substrates,” Proc. of SPIE, Vol. 3679 (1999) [14] L. A. Wang and H. L. Chen, “Multilayer hexamethyldisiloxane film as bottom antireflective coating for ArF lithography,” J. Vac. Sci. Technol. B, Vol. 17, No.6 (1999) [15] H. L. Chen and L. A. Wang, “Hexamethyldisiloxane film as the bottom antireflective coating layer for ArF excimer laser lithography,” Appl. Optics, Vol 38, Issue 22(1999) [16] A. Schiltz, J. F. Terpan, G. Amblard, and P. J. Paniez, “Bottom Anti-Reflective Coatings for DUV Lithography: Determination of optimum thermal process conditions,” J. Microelectronic Eng., Vol. 35 (1997) [17] George E. Bailey, Nicholas K. Eib, Earnest C. Murphy,“Progressions in deep ultraviolet bottom antireflective coatings,” Proc. of SPIE, Vol. 3999 (2000)[18] Peter Trefonas, Robert Blacksmith, Charles R. Szmanda, Robert Kavanagh, Tim Adams, Gary N. Taylor, Suzanne Coley, and Gerd Pohlers, “Organic antireflective coatings for 193 nm lithography,” Proc. of SPIE, Vol. 3678 (1999) [19] Qizhi He, Wei W. Lee, Maureen Hanratty, Daty Rogers, Guoqiang Xing, Abha Singh, Eden Zieliski, “Inorganic antireflective coating process for deep-UV lithography,” Proc. of SPIE, Vol. 3334 (1998) [20] Qun Ying Lin, Alex Cheng, John Sudijono and Charles Lin, “Dual layer inorganic SiON bottom ARC for 0.25μm DUV hard mask applications,”Proc. of SPIE, Vol. 3678 (1999) [21] Y. Trouiller, N. Buffet, T. Mourier, Y. Gobil, P. Schiavone, Y. Quere,“Inorganic bottom ARC SiOxNy for interconnection levels on 0.18μm technology,” Proc. of SPIE, Vol. 3333 (1998) [22] Tetsuo Gocho, Tohru Ogawa, Masakazu Muroyama and Jun-ichi Sato,“Chemical vapor deposition of anti-reflective layer film for excimer laser lithography,” J. J. Appl. Phys., Vol. 33 (1994) [23] Yasunobu Onishi, Yasuhiko Sato, Eishi Shiobara, Seiro Miyoshi, Hideto Matsuyama, Junko Abe, Hideo Ichinose, Tokuhisa Ohiwa, Yoshihiko Nakano, Sawako Yoshikawa, and Shuzi Hayase, “Application of polysilanes for deep UV antireflective coating,” Proc. of SPIE, Vol. 3678 (1999) [24] 蔡志偉、唐麗英,“應用資料包絡分析法與自組性演算法最佳化來自實驗設計之多反應變數”,國立交通大學工業工程管理學系,品質學報,2006。 [25]方俊雄,“反應曲面在公差分配的應用分析“,逢甲大學碩士論文,1998 [26]蔣安國,“在熱效應影響下,以統計方法做參數與公差設計“,逢甲大學碩士論文,2001 [27]增珞萍,“在熱效應影響下,以反應曲面法尋找多目標模擬模式之最佳解-以半導體封裝印字區為例“,成功大學碩士論文,1999 [28]黃乾怡,“以實驗設計方法改善筆記型電腦PCB設計與組裝“,華梵大學碩士論文,2001 [29] 載金琪,“以反應曲面方法改善銅導線晶圓封裝之銲線製程問題“ [30] 鄭春生,“品質管理“,育友出版社,1997 [31] 趙文褀,“低介電係數薄膜於深紫外光和真空紫外光波段微影之抗反射層研究“,清華大學碩士論文,2002 [32] 鄭旭君,“低介電常數薄膜作為深紫外光微影之抗反射層研究“,清華大學碩士論文,2000 [33] 蔡勇文,“I-LINE光阻劑於TFT LCD Array製程之應用與評估“,中央大學碩士論文,2006
摘要: 
微影技術是將電路圖案轉移至光阻劑上的一種方法,保持圖案轉移輪廓的不失真是微影製程的一大重點。然而,當光進入不同介質界面時會產生界面的反射,且反射的光線在曝光系統中是不易控制的變因,也會對於曝光後阻劑的輪廓造成很大的影響。所以,在先進微影技術中,如何有效的抑低反射光是其研究主題。

本篇論文中,我們首先探討微影技術的原理及駐波效應在其技術上的改善應用,接著發展出一個處理程序,共包含兩個部分。第一部分著重於以準分子雷射(KrF,波長為248nm)底部抗反射層為主軸,在其晶片上塗佈光阻劑(DUV42P-312)形成抗反射層,用以降低來自底材的反射率。第二部分為反射與入射之光波干涉後產生的駐波現象之補償,藉由曝光後烘烤程序,使光阻結構重新排列,藉以降低駐波效應。
經由以上程序,實驗結果發現,我們可抑制駐波效應到最低擺幅比,減低其誤差值,並提升產品良率,於微影製程上有大幅度之改進。

Photolithography is a resolution for transferring a circuit pattern to photoresists. And, in transferring, keep a photo shape without loss (alignment precision) is an important issue. However, when a light entered different surfaces, the reflect light is a variable in the light exposure system which we unable to control and it will result in a huge effect on the shape of the exposed photo in the photoresists. Based on this reason, how to reduce the effect of reflect light is a research issue in the advanced photolithography techniques.
In this thesis, we describe the principles of photolithography techniques and focus on the standing-wave effect improvement in photolithography manufacture. Then, we develop a headling procedure which included two parts. First, we use KrF-247nm excimer laser to be a bottom anti-reflective coating and filled with the photoresist (DUV42P-312) to generate an anti-reflective coating for decreasing the reflection rate of specimens. Second, we focus on the compensation of the phenomenon in the standing wave which generated by the interference of reflection and incidence. We create a process with post exposure bake to re-arrange the fabrication of photoresists and reduce the standing wave effects.
In the light of the above, we have restrained the standing wave effects to the lowest swing ratio and reduced their errors. In our experiments, we will get a better rate of production and have an enhanced improvement in the photolithography manufacture.
URI: http://hdl.handle.net/11455/2227
其他識別: U0005-1106200912095700
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.