Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2231
DC FieldValueLanguage
dc.contributor施文彬zh_TW
dc.contributor胡毓忠zh_TW
dc.contributor吳嘉哲zh_TW
dc.contributor.advisor戴慶良zh_TW
dc.contributor.author呂柏緯zh_TW
dc.contributor.authorLu, Po-Weien_US
dc.contributor.other中興大學zh_TW
dc.date2010zh_TW
dc.date.accessioned2014-06-05T11:42:45Z-
dc.date.available2014-06-05T11:42:45Z-
dc.identifierU0005-1108200913520000zh_TW
dc.identifier.citation參考文獻 [1] E. Hynes, P. Elebert, D. McAuliffe, D. Doyle, M. O’Neill, W. A. Lane, H. Berney and M. Hill, “The CAP-FET, a Scaleable MEMS Sensor Technology on CMOS with Programmable Floating Gate,” International Electron Devices Meeting Technical Digest, pp. 41, 2001. [2] H. K. Trieu, N. Kordas and W. Mokwa, “Fully CMOS Compatible Capacitive Differential Pressure Sensors with On-chip Programmabilities and Temperature Compensation,” Proceedings of IEEE, vol. 2, pp. 1451-1455, 2002. [3] L. S. Pakula, H. Yang, H. T. M. Pham, P. J. French and P. M. Sarro, “Fabrication of A CMOS Compatible Pressure Sensor for Harsh Environments,” Journal of Micromechanics and Microengineering, vol. 14, pp. 1478-1483, 2004. [4] L. J. Yang, C. C. Lai, C. L. Dai and P. Z. Chang, “A Piezoresistive Micro Prssure Sensor Fabricated by Commercial DPDM CMOS Process,” Tamkang Journal of Science and Engineering, vol. 8, pp. 67-73, 2005. [5] C. L. Dai and M. C. Liu, “Complementary Metal-Oxide-Semiconductor Microelectromechanical Pressure Sensor Integrated with Circuits on Chip,” Japanese Journal of Applied Physics, vol. 46, pp. 843-848, 2007. [6] J.M.Lysko, R.S.Jachowicz, M.A.Krzycki, “Semiconductor pressure sensor based on FET structure, “Proc. Of IEEE Instrumentation and Measurement Technology Conference,” pp.1233-1236, 1994. [7] L. Svensson, J.A. Plaza, M.A. Benitez, J.Esteve, E,Lora-Tamayo, “Surface micromachining technology applied to the fabrication of a FET pressure sensor,” J.Micromech.Microeng, vol.6, pp.680-836, 1996. [8] E.Hynes, M.O’Neill, D.McAuliffe, H.Berney, W.A.Lane, G.Kelly, M.Hill, “Development and characterisation of a surface micromachined FET pressure sensor on a CMOS process,” Sensors and Actuators,vol.A, pp. 283-292, 1999. [9] E.Hynes, P.Elebert, M.O’Neill, H.Berney, W.A.Lane, G.Kelly, M.Hill, “Development of an FET Pressure Sensor Model and use to Predict Sensor Behaviour as aFunction of Electrode Geometry,” MSM 2000, San Diego, USA, pp.185-188 [10] S. Buschnakowski, A. Bertz, W. Brauer, S. Heinz, R. Schuberth, G. Ebest and T. Gessner, “Development and Characterisation of A High Aspect Ratio Vertical FET Sensor for Motion Detection,” International Transducers, Solid-State Sensors, Actuators and Microsystems Conference, vol. 2, pp. 1391-1394, 2003. [11] Hitachi, Ltd., “An Ultra Small RFID Chip: μ-chip”, IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, pp. 241-244, 2004. [12] Namjum Cho, Seong-Jun Song, Sunyoung Kim, Shiho Kim, and Hoi-Jun Yoo, “A 5.1-μW UHF RFID Tag Chip integrated with Sensors for Wireless Environmental Monitoring ,” Proceedings of ESSCIRC, European Solid-State Circuits Conference, pp. 279-282, 2005. [13] L. H. Guo, A. P. Popov, H. Y. Li, Y. H. Wang, V. Bliznetsov, G. Q. Lo, N. Balasubramanian, and D.L. Kwong, “A small OCA on a 1 × 0.5-mm 2.45GHz RFID Tag—Design and Integration Based on a CMOS-Compatible Manufacturing Technology,” IEEE Electron Device Letters, vol. 27, no. 2, pp. 96-98 , 2006. [14] Y. C. Lee and C. S. Park, “A very compact 62GHz transmitter LTCC SiP module for wireless terminals applications,” Microwave and optical technology letters, vol. 49, pp. 575-577, 2007. [15] P. C. Wang, C. J. Chang, W. M. Chiu, P. J. Chiu, C. C. Wang, C. H. Lu, K. T. Chen, M. C. Huang, Y. M. Chang, S. M. Lin, K. U. Chan, Y. H. Lin and C. C. Lee, “A 2.4 GHz Fully Integrated Transmitter Front End with +26.5-dBm On-Chip CMOS Power Amplifier,” IEEE Radio Frequency Integrated Circuits Symposium, pp. 263-266, 2007. [16] Sheng-Hsiang Tseng, Ying-Jui Hung, Ying-Zong Juang, Michael S.-C. Lu, “A 5.8-GHz VCO with CMOS-compatible MEMS inductors,” Sensors and Actuators A pp.187–193, 2007. [17] Kenneth K. O, Kihong Kim, Brian A. Floyd, Jesal L. Mehta, Hyun Yoon, Chih-Ming Hung, Dan Bravo, Timothy O. Dickson, Xiaoling Guo, Ran Li, Narasimhan Trichy, Jim Caserta, Wayne R. Bomstad, II, Jason Branch, Dong-Jun Yang, Jose Bohorquez, Eunyoung Seok, Li Gao, Aravind Sugavanam, J.-J. Lin, Jie Chen, and J. E. Brewer, “On-Chip Antennas in Silicon ICs and Their Application,” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 52, NO. 7, pp.1312-1323, JULY 2005. [18] Wei Gao and Zhiping Yu, “Scalable Compact Circuit Model and Synthesis for RF CMOS Spiral Inductors,” IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 54, NO. 3, pp.1055-1064, MARCH 2006. [19] Hirotaka SUGAWARA, Kenichi OKADA and Kazuya MASU, “Small-Area Inductor for Silicon CMOS Chips,” Japanese Journal of Applied Physics Vol. 44, No. 4B, pp. 2766–2769, 2005. [20] Stefan von der Mark, Meik Huber and Georg Boeck, “24 GHz Direct Conversion Transceiver for Sensor Networks,” IEEE Communications Society subject matter experts for publication in the WCNC 2007 proceedings, pp.479-482, 2007. [21] Nattapon Chaimanonart and Darrin J. Young, “Remote RF Powering System for Wireless MEMS Strain Sensors,” IEEE SENSORS JOURNAL, VOL. 6, NO. 2, APRIL 2006, pp.484-489, 2006. [22] Andrew D. DeHennis, and Kensall D. Wise, “A Fully Integrated Multisite Pressure Sensor for Wireless Arterial Flow Characterization,” JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 15, NO. 3, pp.678-685, JUNE 2006. [23] Norbert R.Malik, Electronic Circuits Analysis, Simulation, and Design, 東華書局 [24] Donald A. Neamen, Semiconductor Physics & Devuces, 台商圖書 [25] Sung-Mo Kang, Yusuf Leblebici, CMOS數位積體電路分析與設計, 全華科技圖書 [26] 戴銚葦,整合積體電路的FET微壓力感測器,國立中興大學機械研究所碩士論文,2007 [27] 林祐鋒,可結合於微感測器之射頻傳輸器,國立中興大學機械研究所碩士論文,2008zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/2231-
dc.description.abstract本論文利用標準TSMC 0.35 μm 2P4M CMOS製程,製作結合無線射頻系統之壓力感測器,分別設計了電容和FET型式的微壓力感測器,並搭配上不同的電路,使用環狀振盪器作為射頻產生器,並搭配電感天線將訊號以無線傳輸方式輸出。壓力計方面均利用半徑為50 μm的圓型壓力薄膜結構,藉由受壓後薄膜的位移改變以感測壓力。其中電容式微壓力計的電路,藉由直流偏壓供給環狀振盪器產生射頻訊號,由電容式微壓力感測器替代電路中的電容,當電容變化會使得輸出頻率變化;此外FET式微壓力感測器則與放大電路結合,當施壓時會使得感測器輸出功率提升,藉由改變輸出訊號的功率以感測壓力。製程完成後利用蝕刻液,以濕式蝕刻方式,將壓力薄膜結構釋放懸浮,並且使用化學沈積系統沈積高分子材料parylene,將壓力空腔封裝,以量測外界與壓力腔的壓差。 根據實驗結果可得知,當電容式微壓力感測器受到500kPa的壓力時,會使得電容提升,而頻率下降,靈敏度約為8 kHz/kPa。而FET式微壓力感測器受到500kPa的壓力後,會隨著壓力上升而使得功率提升,並且增加最大電壓值,經由測量後可得知工作頻率約為70MHz,靈敏度約為0.0148zh_TW
dc.description.abstractWireless micro pressure sensors were manufactured using the standard 0.35 μm CMOS (complementary metal oxide semiconductor) process and a post-CMOS process. In this study, two different pressure sensors were designed, capacitive and FET (field effect transistor) type, and integration with different circuits. Wireless circuits included a ring oscillator and an antenna. The ring oscillator was used to generate RF (radio frequency) signal and the antenna was utilized to transmit the signal output. The capacitive pressure sensor changed in capacitance when applying a pressure to one, and the ring oscillator converted the capacitance variation of the sensor into the RF signal. The frequency of RF signal changed as the capacitance of the sensor varied. The EFT pressure sensor was combined with an amplifier that can amplify the output signal and increase the sensitivity of the sensor. The post-process employed the etchants to etch the sacrificial layers, and to release the suspended structures, and then used a PDS (parylene deposition system) to seal the etching holes in the pressure sensors. The experimental results showed that the capacitive pressure sensor had a sensitivity of about 8 kHz/kPa and the FET pressure sensor had a sensitivity of about 0.08 mV/kPa. The sensitivity of output power in the FET pressure sensor was 0.0148en_US
dc.description.tableofcontents目錄 致謝 i 摘要 iii Abstract iv 目錄 v 圖目錄 vii 第1章 緒論 1 1.1前言 1 1.2微壓力感測器 1 1.3無線射頻技術 3 1.4研究動機 4 第2章 微壓力感測器的設計與分析 5 2.1電容式微壓力感測器的設計 5 2.2電容式微壓力感測器的模擬 7 2.3 FET式微壓力感測器的設計 11 2.4 FET式微壓力感測器的模擬 17 第3章 無線傳輸電路的設計與分析 19 3.1無線射頻電路的設計 19 3.1.1 環狀振盪器 19 3.1.2 放大器電路 23 3.2.3 傳輸天線 25 3.2無線射頻電路的模擬 28 3.2.1環狀振盪器電路模擬 28 3.2.2放大電路模擬 32 3.2.3傳輸天線模擬 35 3.3直流轉射頻訊號電路的設計 37 3.4直流轉射頻訊號電路的模擬 38 第4章 微壓力感測器的製作 41 4.1電容式微壓力感測器的製程 41 4.2 FET式微壓力感測器的製程 46 第5章 實驗結果 51 5.1電容式微壓力感測器 51 5.1.1電容式環狀振盪電路量測 51 5.1.2電容式微壓力計量測 54 5.2 FET式微壓力感測器 57 5.2.1 FET式微壓力感測器電路量測 57 5.2.2 FET式微壓力感測器量測 61 5.2.3無線傳輸量測 68 5.3直流轉射頻訊號電路 70 第6章 結論與未來展望 75 附錄A. 氣體感測器結合CMOS無線傳輸器 77 A.1架構簡介 77 A.2模擬結果 81 A.3後製程流程 83 附錄B. CMOS-MEMS製作隔離驅動與訊號端之微機械開關 85 B.1研究動機 85 B.2架構簡介 85 B.3模擬結果 87 B.4後製程流程 96 B.5量測結果 97 參考文獻 101zh_TW
dc.language.isoen_USzh_TW
dc.publisher機械工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1108200913520000en_US
dc.subjectCMOSen_US
dc.subjectCMOSzh_TW
dc.subjectWireless transmissionen_US
dc.subjectPressure sensorsen_US
dc.subject無線傳輸zh_TW
dc.subject壓力感測器zh_TW
dc.title無線傳輸的微壓力感測器zh_TW
dc.titleMicro pressure sensor with wireless transmission circuitsen_US
dc.typeThesis and Dissertationzh_TW
item.languageiso639-1en_US-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:機械工程學系所
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.