Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2236
標題: 應用同步步進相位法之新量測技術於光彈之研究
A novel technique of measurement for photoelasticity by real-time phase-stepped method
作者: 黃媛璟
Huang, Yuan-Ching
關鍵字: photoelasticity;光彈
出版社: 機械工程學系所
引用: [1] Chen T.Y., “Digital Photoelasticity,” In:P.K. Rastogi, Editor, Photomechanics, Springer, Berlin, 197-232(2000). [2] Frocht M.M., “Photoelasticity,” Vol. 1, John Wiley and Sons, New York, 1941; Vol. 2, (1948). [3] Flanagan J.H., “Photoelastic Photography,” Proc. ESA, Vol. XV, No. 2, 1-10(1958). [4] Coker E.G. and Filon L.N.G., “A Treatise on Photoelasticity,” University Press, Cambridge, U.K., (1931). [5] Umezaki E., Tamaki T. and Takahashi S., “Automatic Stress Analysis of Photoelastic Experiment by Use of Image Processing,” Exp. Tech., 22-27 (1989). [6] Yao J.Y., “Extracting Isoclinics Using Image-Processing Techniques,” Exp. Tech., 10-11(1987). [7] Haake S.J. and Patterson E.A., “Photoelastic Analysis of Frozen Stresses Specimens Using Spectral Contents Analysis,” Experimental Mechanics, Vol. 32, 266-272(1992). [8] Morimoto Y., Morimoto Jr.Y. and Hayashi T., “Separation of Isochromatics and Isoclinics Using Fourier Transform,” Experimental Techniques, Vol. 18(5), 13-18(1994). [9] Ajovalasit A., Barone S. and Petrucci G., “Towards RGB Photoelasticity:Full-Field Automated Photoelasticity in White Light,” Experimental Mechanics, Vol. 35(3), 193-200(1995). [10] Mawatari A., Takashi M. and Toyoda Y., “Whole-Area Photoelastic Analysis by Image Processing on the Principal Stress Direction and Saparation of Isochromatics from Isoclinics,” Trans. of JSME, Ser. A, Vol. 55, No. 514, 1423-1428(1989). [11] Wang Z.F. and Patterson E.A., “Towards Full Field Automated Photoelastic Analysis of Complex Components”, Strain, Vol. 27, 49-53(1991). [12] Hecker F.W. and Morche B., “Computer Measurement of Relative Retardations in Plane Photoelasticity,” Experimental Stress Analysis, H. Weiringa, editor, Martinuus Nijhoff, Dordrecht, 532-542(1986). [13] Patterson E.A. and Wang Z.F., “Simultaneous Observation of Phase-Stepped Images for Automated Photoelasticity,” J. Strain Analysis Eng. Des., Vol. 33(1), No. 1, 1-15(1998). [14] Hobbs J.W., Greene R.J. and Patterson E.A., “A Novel Instrument for Transient Photoelasticity,” Experimental Mechanics, Vol. 43, No. 4, 403-409(2003). [15] Gomi K., Ichinose K. and Niitsu Y., “A New Technique of Minute Birefringence Measurement by Using Simple Polarimetry,” IEEE, Electronic Materials and Packaging, International Conference on 11-14 Dec. 2006. [16] Sai Prasad V., Madhu K.R. and Ramesh K., “Towards effective phase unwrapping in digital photoelasticity,” Optics and Lasers in Engineering, Vol. 42, 421-436(2004). [17] Ashokan K. and Ramesh K., “A Novel Approach for Ambiguity Removal in Isochromatic Phasemap in Digital Photoelasticity,” Measurement Science and Technology, Vol. 17, 2891-2896(2006). [18] James W.D. and William F.R., “Experimental Stress Analysis,” McGraw-Hill International Editions, 425-439(1991). [19] Ramesh K. and Deshmukh S.S., “Three Fringe Photoelasticity:Use of Colour Image Processing Hardware to Automate Ordering of Isochromatics,” Strain, Vol. 32, No. 3, 79-86(1996). [20] Yao J.Y., “Digital Image Processing and Isolinics,” Exp. Mech., Vol. 30, No. 3, 264-269(1990). [21] Theocaris P.S. and Gdoutos E.E., “Matrix Theory of Photoelasticity,” Berlin and New York, Springer-Verlag, (1979). [22] Brown G.M. and Sullivan J.L., “The Computer-Aided Holophotoelastic Method,” Exp. Mech., Vol. 30, No. 2, 135-144(1990). [23] Hariharan P., Oreb B.F., and Eijux T., “Digital Phase-Shift Interferome-Try:A Simple Error-Compensating Phase Calculation Algorithm,” Appl. Opt., Vol. 26, 2504(1987). [24] Ghiglia D.C., Mastin G.A. and Romero L.A., “Cellular-Automata Method for Phase Unwrapping,” J. Opt. Soc. Am. A, Vol. 4, 267 (1987). [25] Spik A. and Robinson D.W., “Investigation of the Cellular Automata Method for Phase Unwrapping and its Implementation on an Array Processor,” Optics and Lasers in Engineering, Vol. 14, 25-37(1991). [26] Chang H.Y., Chen C.W., Lee C.K. and Hu C.P., “The Tapestry Cellular Automata Phase Unwrapping Algorithm for Interferogram Analysis,” Optics and Lasers in Engineering, Vol. 30, No. 6, 487-502(1998). [27] Huang M.J. and Lai C.J., “Phase Unwrapping Based on a Parallel Noise-Immune Algorithm,” Optics and Laser Technology, Vol. 34, No.6, 457-464(2002). [28] 陳森案,“相位重建之影像處理技術應用於光學量測之研究”,中興大學機械工程學研究所碩士論文,中華民國九十一年七月。 [29] 周文彬,“平行性區域形相位展開技術應用於雷射光學量測之研究”,中興大學機械工程學研究所碩士論文,中華民國九十二年七月。 [30] 林智文,“調控型相位展開及顯微光學量測之研究”,中興大學機械工程學研究所碩士論文,中華民國九十三年七月。 [31] Goldstein R.M., Zebker H.A. and Werner C.L., “Satellite Radar Interferometry:Two-Dimensional Phase Unwrapping,” Radio Science, Vol. 23, No.4, 713-720(1988). [32] Ekman M.J. and Nurse. A.D., “Absolute Determination of the Isochromatic Parameter by Load-stepping Photoelasticity,” Experimental Mechanics, 189-195(1998). [33] Ramesh* K., Tamrakar D.K., “Improved Determination of Retardation in Digital Photoelasticity by Load Stepping,” Optics and Lasers in Engineering 33, 387-400(2000). [34] Fymat A.L., “Jones’s Matrix Representation of Optical Instruments. I:Beam Splitters,” Applied Optics, Vol.10, No. 11, 2499-2505(1971). [35] Ramesh* K. and Ramji M., “Whole Field Evaluation of Stress Components in Digital Photoelasticity-Issues, Implementation and Application,” Optics and Lasers in Engineering 46, 257-271(2008). [36] Plouzennec N. and Lagarde A., “Two-wavelength Method for Full-field Automated Photoelasticity,” Experimental Mechanics, 274-277(1999).
摘要: 
本文提出一套簡潔的歩進相位法之三場、四場與六場架構,可分別同步取得等傾線與等色線的資訊。在三場架設中,有別於一般需四道光路和輸出時的四分之一波板,並且只要調整檢偏器之角度便可得到三張的包裹相位圖;而四場架設裡,也只需多一片輸出時的四分之一波板,使其中兩道光路的結果為圓偏光,此外,仍然只轉動檢偏器之角度即可,相較傳統的四場,除了元件的簡化外,角度設定也較簡單容易;六場平偏則改善了一般平偏或圓偏只能單一取得主應力角或因四分之ㄧ波板所造成的影響。
另外,為了使相位展開技術能順利完成,進而得到相對的延遲量,在修正等色線包裹相位圖中的不連續點時,本文使用之方法是將修正完的正確等傾線數值帶入等色線公式中,此法在三場與六場中因為少掉了輸出的四分之一波板,造成公式的結果使得條紋角度分布非反正切形式,因此需另外使用負載相移法來做修正。最後,將此三種方法修正後的等色線包裹相位圖執行相位展開,再與有限元素理論解做比較可證明這些方法的可行性與準確性。

A novel instrument for minuting birefringence measurements based on the Phase-Stepped Images Obtained Simultaneously (PSIOS) system, which enables three, four and six phase-stepped photoelastic images to be collected simultaneously. In three phase-stepping method, requires only three stepped photoelastic images although conventional phase-stepping methods require four images. Regarding four phase-stepping method, the difference of new instrument is that the original instrument requires four quarter-wave plates and needs to set up eight different angular magnitudes, whereas the new one requires only one quarter wave plate and changes the angle of analyzers. The plane polariscope of six phase-stepping method has improved that both circular polariscope and plane polariscope of four phase-stepping method can not get the information of full-field photoelasticity.
In addition, this article took the isoclinic information which unwrapped already into isochromatic formula to get the correct retardation. This method might not get the form of arc-tangent because there are not output quarter-wave plates in three and six phase-stepping methods. Therefore, this paper corrected it by load-stepping method. Finally, compare the results of computer simulations with theoretical solutions and demonstrate that the methods are feasible and accurate.
URI: http://hdl.handle.net/11455/2236
其他識別: U0005-1208200900275700
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.