Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2236
DC FieldValueLanguage
dc.contributor李吉群zh_TW
dc.contributor林世聰zh_TW
dc.contributor.advisor黃敏睿zh_TW
dc.contributor.advisorMin-Jui Huangen_US
dc.contributor.author黃媛璟zh_TW
dc.contributor.authorHuang, Yuan-Chingen_US
dc.contributor.other中興大學zh_TW
dc.date2010zh_TW
dc.date.accessioned2014-06-05T11:42:46Z-
dc.date.available2014-06-05T11:42:46Z-
dc.identifierU0005-1208200900275700zh_TW
dc.identifier.citation[1] Chen T.Y., “Digital Photoelasticity,” In:P.K. Rastogi, Editor, Photomechanics, Springer, Berlin, 197-232(2000). [2] Frocht M.M., “Photoelasticity,” Vol. 1, John Wiley and Sons, New York, 1941; Vol. 2, (1948). [3] Flanagan J.H., “Photoelastic Photography,” Proc. ESA, Vol. XV, No. 2, 1-10(1958). [4] Coker E.G. and Filon L.N.G., “A Treatise on Photoelasticity,” University Press, Cambridge, U.K., (1931). [5] Umezaki E., Tamaki T. and Takahashi S., “Automatic Stress Analysis of Photoelastic Experiment by Use of Image Processing,” Exp. Tech., 22-27 (1989). [6] Yao J.Y., “Extracting Isoclinics Using Image-Processing Techniques,” Exp. Tech., 10-11(1987). [7] Haake S.J. and Patterson E.A., “Photoelastic Analysis of Frozen Stresses Specimens Using Spectral Contents Analysis,” Experimental Mechanics, Vol. 32, 266-272(1992). [8] Morimoto Y., Morimoto Jr.Y. and Hayashi T., “Separation of Isochromatics and Isoclinics Using Fourier Transform,” Experimental Techniques, Vol. 18(5), 13-18(1994). [9] Ajovalasit A., Barone S. and Petrucci G., “Towards RGB Photoelasticity:Full-Field Automated Photoelasticity in White Light,” Experimental Mechanics, Vol. 35(3), 193-200(1995). [10] Mawatari A., Takashi M. and Toyoda Y., “Whole-Area Photoelastic Analysis by Image Processing on the Principal Stress Direction and Saparation of Isochromatics from Isoclinics,” Trans. of JSME, Ser. A, Vol. 55, No. 514, 1423-1428(1989). [11] Wang Z.F. and Patterson E.A., “Towards Full Field Automated Photoelastic Analysis of Complex Components”, Strain, Vol. 27, 49-53(1991). [12] Hecker F.W. and Morche B., “Computer Measurement of Relative Retardations in Plane Photoelasticity,” Experimental Stress Analysis, H. Weiringa, editor, Martinuus Nijhoff, Dordrecht, 532-542(1986). [13] Patterson E.A. and Wang Z.F., “Simultaneous Observation of Phase-Stepped Images for Automated Photoelasticity,” J. Strain Analysis Eng. Des., Vol. 33(1), No. 1, 1-15(1998). [14] Hobbs J.W., Greene R.J. and Patterson E.A., “A Novel Instrument for Transient Photoelasticity,” Experimental Mechanics, Vol. 43, No. 4, 403-409(2003). [15] Gomi K., Ichinose K. and Niitsu Y., “A New Technique of Minute Birefringence Measurement by Using Simple Polarimetry,” IEEE, Electronic Materials and Packaging, International Conference on 11-14 Dec. 2006. [16] Sai Prasad V., Madhu K.R. and Ramesh K., “Towards effective phase unwrapping in digital photoelasticity,” Optics and Lasers in Engineering, Vol. 42, 421-436(2004). [17] Ashokan K. and Ramesh K., “A Novel Approach for Ambiguity Removal in Isochromatic Phasemap in Digital Photoelasticity,” Measurement Science and Technology, Vol. 17, 2891-2896(2006). [18] James W.D. and William F.R., “Experimental Stress Analysis,” McGraw-Hill International Editions, 425-439(1991). [19] Ramesh K. and Deshmukh S.S., “Three Fringe Photoelasticity:Use of Colour Image Processing Hardware to Automate Ordering of Isochromatics,” Strain, Vol. 32, No. 3, 79-86(1996). [20] Yao J.Y., “Digital Image Processing and Isolinics,” Exp. Mech., Vol. 30, No. 3, 264-269(1990). [21] Theocaris P.S. and Gdoutos E.E., “Matrix Theory of Photoelasticity,” Berlin and New York, Springer-Verlag, (1979). [22] Brown G.M. and Sullivan J.L., “The Computer-Aided Holophotoelastic Method,” Exp. Mech., Vol. 30, No. 2, 135-144(1990). [23] Hariharan P., Oreb B.F., and Eijux T., “Digital Phase-Shift Interferome-Try:A Simple Error-Compensating Phase Calculation Algorithm,” Appl. Opt., Vol. 26, 2504(1987). [24] Ghiglia D.C., Mastin G.A. and Romero L.A., “Cellular-Automata Method for Phase Unwrapping,” J. Opt. Soc. Am. A, Vol. 4, 267 (1987). [25] Spik A. and Robinson D.W., “Investigation of the Cellular Automata Method for Phase Unwrapping and its Implementation on an Array Processor,” Optics and Lasers in Engineering, Vol. 14, 25-37(1991). [26] Chang H.Y., Chen C.W., Lee C.K. and Hu C.P., “The Tapestry Cellular Automata Phase Unwrapping Algorithm for Interferogram Analysis,” Optics and Lasers in Engineering, Vol. 30, No. 6, 487-502(1998). [27] Huang M.J. and Lai C.J., “Phase Unwrapping Based on a Parallel Noise-Immune Algorithm,” Optics and Laser Technology, Vol. 34, No.6, 457-464(2002). [28] 陳森案,“相位重建之影像處理技術應用於光學量測之研究”,中興大學機械工程學研究所碩士論文,中華民國九十一年七月。 [29] 周文彬,“平行性區域形相位展開技術應用於雷射光學量測之研究”,中興大學機械工程學研究所碩士論文,中華民國九十二年七月。 [30] 林智文,“調控型相位展開及顯微光學量測之研究”,中興大學機械工程學研究所碩士論文,中華民國九十三年七月。 [31] Goldstein R.M., Zebker H.A. and Werner C.L., “Satellite Radar Interferometry:Two-Dimensional Phase Unwrapping,” Radio Science, Vol. 23, No.4, 713-720(1988). [32] Ekman M.J. and Nurse. A.D., “Absolute Determination of the Isochromatic Parameter by Load-stepping Photoelasticity,” Experimental Mechanics, 189-195(1998). [33] Ramesh* K., Tamrakar D.K., “Improved Determination of Retardation in Digital Photoelasticity by Load Stepping,” Optics and Lasers in Engineering 33, 387-400(2000). [34] Fymat A.L., “Jones’s Matrix Representation of Optical Instruments. I:Beam Splitters,” Applied Optics, Vol.10, No. 11, 2499-2505(1971). [35] Ramesh* K. and Ramji M., “Whole Field Evaluation of Stress Components in Digital Photoelasticity-Issues, Implementation and Application,” Optics and Lasers in Engineering 46, 257-271(2008). [36] Plouzennec N. and Lagarde A., “Two-wavelength Method for Full-field Automated Photoelasticity,” Experimental Mechanics, 274-277(1999).zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/2236-
dc.description.abstract本文提出一套簡潔的歩進相位法之三場、四場與六場架構,可分別同步取得等傾線與等色線的資訊。在三場架設中,有別於一般需四道光路和輸出時的四分之一波板,並且只要調整檢偏器之角度便可得到三張的包裹相位圖;而四場架設裡,也只需多一片輸出時的四分之一波板,使其中兩道光路的結果為圓偏光,此外,仍然只轉動檢偏器之角度即可,相較傳統的四場,除了元件的簡化外,角度設定也較簡單容易;六場平偏則改善了一般平偏或圓偏只能單一取得主應力角或因四分之ㄧ波板所造成的影響。 另外,為了使相位展開技術能順利完成,進而得到相對的延遲量,在修正等色線包裹相位圖中的不連續點時,本文使用之方法是將修正完的正確等傾線數值帶入等色線公式中,此法在三場與六場中因為少掉了輸出的四分之一波板,造成公式的結果使得條紋角度分布非反正切形式,因此需另外使用負載相移法來做修正。最後,將此三種方法修正後的等色線包裹相位圖執行相位展開,再與有限元素理論解做比較可證明這些方法的可行性與準確性。zh_TW
dc.description.abstractA novel instrument for minuting birefringence measurements based on the Phase-Stepped Images Obtained Simultaneously (PSIOS) system, which enables three, four and six phase-stepped photoelastic images to be collected simultaneously. In three phase-stepping method, requires only three stepped photoelastic images although conventional phase-stepping methods require four images. Regarding four phase-stepping method, the difference of new instrument is that the original instrument requires four quarter-wave plates and needs to set up eight different angular magnitudes, whereas the new one requires only one quarter wave plate and changes the angle of analyzers. The plane polariscope of six phase-stepping method has improved that both circular polariscope and plane polariscope of four phase-stepping method can not get the information of full-field photoelasticity. In addition, this article took the isoclinic information which unwrapped already into isochromatic formula to get the correct retardation. This method might not get the form of arc-tangent because there are not output quarter-wave plates in three and six phase-stepping methods. Therefore, this paper corrected it by load-stepping method. Finally, compare the results of computer simulations with theoretical solutions and demonstrate that the methods are feasible and accurate.en_US
dc.description.tableofcontents致謝 I 摘要 II ABSTRACT III 目錄 IV 圖目錄 VIII 表目錄 XIII 第一章 緒論 1 1.1 研究動機與方法 1 1.2 相關文獻回顧 2 1.3 論文大綱 4 第二章 光彈法之理論 6 2.1 偏振光(POLARIZED LIGHT) 6 2.2 光學元件 7 2.3 雙折射性材料(BIREFRINGENCE MATERIAL) 8 2.4 光-應力定律(STRESS-OPTICAL LAW) 9 2.5 光彈法之架設系統 10 2.5.1 平面偏光系統(Plane Polariscope) 11 2.5.2 圓偏光系統(Circular Polariscope) 16 2.6 光彈矩陣理論 20 2.6.1 Jones Vector與Jones Matrix 21 2.6.2 Jones Calculus 24 2.7 光彈矩陣法與幾何法之差異 25 2.8 平面偏光系統之JONES CALCULUS 26 2.9 圓偏光系統之JONES CALCULUS 27 第三章 相移干涉術及相位展開法之理論 29 3.1 應用四步相移法於平面偏光系統 29 3.2 應用五步相移法於圓偏光系統 31 3.3 應用六步相移法於圓偏光系統 33 3.4 相位圖Π模數(MODULUS)轉2Π模數(MODULUS) 34 3.5 相位展開(UNWRAPPING) 36 3.5.1 調控式平行相位展開法簡介 38 3.6 不連續點的定義、形成原因與其影響 40 3.7 三力修正法 42 3.8 二波長修正法 43 第四章 歩進相位法之電腦模擬及修正展開法的探討 46 4.1 JONES CALCULUS法推導半圓偏三場公式 47 4.2 JONES CALCULUS法推導圓偏加半圓偏四場公式 49 4.3 JONES CALCULUS法推導平偏六場公式 52 4.4 電腦模擬應力分析 54 4.4.1 半圓偏光系統三步相移電腦模擬 56 4.4.2 圓偏加半圓偏光系統四步相移電腦模擬 59 4.4.3 平偏光系統六步相移電腦模擬 61 4.5 三力修正法在非反正切形式的等色線包裹相位圖之應用 64 4.5.1 半圓偏三步相移等色線修正模擬 65 4.5.2 平偏六歩相移等色線修正模擬 68 4.6 二波長修正法在圓偏極場的光彈相位圖之應用 71 第五章 實驗架設及實驗結果 74 5.1 光彈實驗儀之儀器架設圖 74 5.2 同步瞬時之實驗儀器架設圖 75 5.3 實驗圖 76 5.3.1 半圓偏光系統三步相移實驗圖 76 5.3.2 圓偏加半圓偏光系統四步相移實驗圖 78 5.3.3 平偏光系統六步相移實驗圖 81 5.4 圓偏加半圓偏光系統四步相移之同步瞬時光路實驗圖 83 5.5 實驗結果比對 85 第六章 結果與討論 87 參考文獻 90zh_TW
dc.language.isoen_USzh_TW
dc.publisher機械工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1208200900275700en_US
dc.subjectphotoelasticityen_US
dc.subject光彈zh_TW
dc.title應用同步步進相位法之新量測技術於光彈之研究zh_TW
dc.titleA novel technique of measurement for photoelasticity by real-time phase-stepped methoden_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1en_US-
item.grantfulltextnone-
Appears in Collections:機械工程學系所
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.