Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2238
標題: 時間域光彈應力分析探討比較
Temporal phase unwrapping of photoelastic stress analysis
作者: 安熙良
An, Hsi-Liang
關鍵字: Photoelasticity;光彈;Temporal phase unwrapping;Isoclinic;Isochromatic;等傾線;等色線;時間域
出版社: 機械工程學系所
引用: [1] Matthew J. Ekmam, Andrew D. Nurse, “Completely automated determination of two-dimensional photoelastic parameters using load stepping”, Optics and Lasers in Engineering, vol. 37, 1845-1851(1998). [2] K. Ramesh, D.K Tamrakar, “Improved determination of retardation in digital photoelasticity by load stepping”, Optics and Lasers in Engineering, vol. 33, 387-400(2000). [3] V. Sai Prasad, K.R. Madhu, K. Ramesh, “Towards effective phase unwrapping in digital photoelasticty”, Optics and Lasers in Engineering, vol. 42, 421-436(2004). [4] Dongsheng Zhang, Yongsheng Han, Bao Zhang, Dwayne Arola, “Automatic determination of parameters in photoelasticity”, , Optics and Lasers in Engineering, vol. 45, 860-867(2007). [5] Coker, E. G. and L. N. G. Filon, “A Treatise on Photoelasticity”, Cambridge University Press, New York, (1931). [6] Frocht, M. M., “Photoelasticity. Vol. 1”, John Wiley and Sons, New York, 1941; vol. 2, (1948). [7] Flanagan, J. H., “Photoelastic Photography”, Proc. ESA, vol. XV, no. 2, pp. 1-10, (1958). [8] Umezaki E., Tamaki T. and Takahashi S., “Automatic stress analysis of photoelastic experiment by use of image processing”, Exp. Tech., December pp. 22-27 (1989). [9] Yao, J. Y., “Extracting Isoclinics Using Image-processing Techniques”, Exp. Tech., Oct. pp. 10-11(1987). [10] Mawatari, A., Takashi M. and Toyoda Y., “Whole-Area Photoelastiv Analysis by Image Processing on the Principal Stress Direction and Saparation of Isochromatics from Isoclinics”, Trans. Of JSME, Ser. A, Vol. 55, NO. 514, pp. 1423-1428(1989). [11] Wang Z.F., Patterson E.A., “Towards Full Field Automated Photoelastic Analysis of Complex Components”, Strain, Vol. 27, May, pp. 49-53(1991). [12] Wang Z.F., Patterson E.A., “Use of phase-stepping with demodulation and fuzzy sets for birefringence measurement”, Opt Lasers Eng Vol. 22 pp. 91-104(1995). [13] Sai Prasad V., Madhu K.R. and Ramesh K., “Towards effective phase unwrapping in digital photoelasticity”, Opt Lasers Eng Vol. 42 pp. [14] Villa, J., Quiroga, J. A., Pascual, E., Pascual. Determination of Isoclinics in photoelasticity with a Fast Regularized Estimator. Optics and Lasers in Engineering, Vol. 46, pp. 236-242, 2008 [15] Ashokan, K., Ramesh, K., A Novel Approach for Ambiguity Removal in Isochromatic Phasemap in Digital Photoelasticity, Meas. Sci. Technol., Vol. 17, pp. 2891-2896, 2006 [16] Chen, T. Y., A Simple Method for the Digital Determination of the Photoelastic Fringe Order, Experimental Mechanics, Vol. 40, No. 3, 2000 [17] Ramesh, K., Tamrakar , D. K., Improved Determination of Retardation in Digital Photoelasticity by Load Stepping, Optics and Lasers in Engineering, Vol. 33, pp. 387-400, 2000 [18] Liu, T., Asundi A., Boay, C. G., Full Field Automated Photoelasticity Using Two-Load-Step Method, Opt.Eng., Vol. 40,No. 8, pp. 1629-1635, 2001 [19] Nurse, A. D., Load-stepping Photoelasticity:New Developments Using Temporal Phase Unwrapping, Optics and Lasers in Engineering, Vol. 38, pp. 57-70, 2002 [20] Baldi , A., Bertolino, F., Ginesu, F., A Temporal Phase Unwrapping Algorithm for Photoelastic Stress Analysis, Optics and Lasers in Engineering, Vol. 45, pp. 612-617, 2006 [21] Barone, S., Burriesci, G., Petrucci, G., Computer Aided Photoelasticity by an Optimum Phase Stepping Method, Experimental Mechanics, Vol. 42, No. 2, 2002 [22] Yoneyama, S., Kikuta, H., Phase-Stepping Photoelasticity by Use of Retarders with Arbitrary Retardation, Experimental Mechanics, Vol. 46, pp. 289-296, 2006 [23] Tamrakar, D. K., Ramesh K., Noise-Free Determination of Isochromatic Fringe Order by Load Stepping, Strain, Vol. 38, pp. 11-15, 2002 [24] Kihara, T., An Arctangent Unwrapping Technique of Photoelasticity Using Linearly Polarized Light at Three Wavelengths, Strain, Vol. 39, pp. 65-71, 2003 [25] Plouzennec, N., Lagarde, A., Two-Wavelength Method for Full-Field Automated Potoelasticity, Experimental Mechanics, Vol. 39, No. 4, 1999 [26] James W. Dally and William F. Riley, “Experimental Stress Analysis”, McGraw-Hill International editions. pp. 425-439(1991) [27] Ramesh K. and Deshmukh S. S., “Three fringe photoelasticity: use of colour image processing hardware to automate ordering of isochromatics”, Strain, vol. 32 no. 3, pp. 79-86(1996). [28] Yao, J. Y., “Digital Image Processing and Isolinics”, Exp. Mech., vol. 30 no. 3, pp. 264-269 (1990). [29] Theocaris P. S. and Gdoutos E. E., “Matrix Theory of Photoelasticity”, Berlin and New York, Springer-Verlag (1979). [30] Brown. G. M. and Sullivan J. L., “The Computer-aided Holophotoelastic Method”, Exp. Mech., Vol 30, no.2 pp. 135-144(1990). [31] Hariharan P., Oreb B.F., and Eijux T., “Digital phase-shift interferome –try:a simple error-compensating phase calculation algorithm”, Appl. Opt. vol. 26 pp.2504(1987). [32] Ghiglia D. C., Mastin G. A. and Romero L. A., “Cellular-automata method for phase unwrapping”, J. Opt. Soc. Am. A, Vol. 4, pp.267- (1987). [33] Spik A. and Robinson D. W., “Investigation of the cellular automata method for phase unwrapping and its implementation on an array processor”, Optics and Lasers in Engineering, vol. 14, 25-37(1991). [34] Chang H. Y., Chen C. W., Lee C. K. and Hu C. P., “The tapestry cellular automata phase unwrapping algorithm for interferogram analysis”, Optics and Lasers in Engineering, vol. 30, no. 6, 487-502(1998). [35] Huang M. J. and Lai Cian-Jhih, “Phase unwrapping based on a parallel noise-immune algorithm”, Optics and Laser Technology, vol. 34, no.6, 457-464 (2002). [36] 陳森案,”相位重建之影像處理技術應用於光學量測之研究” ,中興大學機械工程學研究所碩士論文,中華民國九十一年七月。 [37] 周文彬, “平行性區域形相位展開技術應用於雷射光學量測之研究”,中興大學機械工程學研究所碩士論文,中華民國九十二年七月。 [38] 林智文, “調控型相位展開及顯微光學量測之研究”,中興大學機械工程學研究所碩士論文,中華民國九十三年七月。 [39] Goldstein R. M., Zebker H. A. and Werner C. L., “Satellite radar interferometry - Two-dimensional phase unwrapping”, Radio Science, vol. 23, no.4, pp. 713-720(1988).
摘要: 
對於實驗應力分析,光彈應力分析是全場光學技術的一種很普遍且很多研究的一種技術。光彈實驗有兩組有用的基本數據,一為等傾線,即具有相同主應力方向點之軌跡,反映出的是主應力的方向,另一組為等色線,即具有相同主應力差值點之軌跡,反映出的是主應力差值。
在本論文中最主要的是發展出能同時修正主應力角,與主應力差值的錯誤模糊問題,並能夠將不連續點展開得到我們所需要的應力資訊,在此其中利用以相位移法的邏輯為基礎,分別使用兩種不同的力量所拍攝出來的相位移圖,來解決六步相移光彈圖中所產生的不連續點,並利用時間域的原理將主應力差圖來展開。
其中可能會因為光強度的不同而必須做影像拉伸強化的影像處理,但因為兩力法對於多點施力有一定的困難度,故本論文建議使用兩波長來使用,但考慮到因為波長對於不正確的四分之一波板所造成不正確的影響,因此使用四步平偏取代原篇所運算出的主應力角來解決此問題,更可以探討六步相移圓偏與平偏的差異。

Photoelasticity plays an important role in the stress analysis field. Not only because it is a non-contact whole field optical method, but it provides isoclinic (principal stress direction) as well as isochomatic (principal stress difference) data simultaneously, which are the most important parameters in the fields of stress analysis. But, unfortunately, the coupling between these two parameters induces phase ambiguity problem in the isochromatic data unless the isoclinic data have been correctly procured first. In this work, temporal phase unwrapping is applied to solve the aforementioned problem. Two approaches, loading stepping and different wavelength sourcing, are conducted individually to compare their characteristic differences and limitations. Theoretical and experimental studies show the effectiveness of these two approaches. However, in the load stepping approach the applied loads should be carefully controlled to provide the accurate percentage increment of loading onto the analyzed model and somehow it is more complicate and difficult to control the exactitude of the apparatus for loading than just changing the wavelength of illuminating light source with the other approach. A quarter wave plate error compensation phase stepping skill is employed herein to minimize the chromatic aberration caused by the usage of different wavelengths. In summary, the different wavelength temporal phase unwrapping is easier to be implemented than the load stepping approach in procuring photoelastic stress parameters. The accuracy of results is ensured by a specific phase stepping algorithm, which takes the isochromatic aberration of quarter wave plate into consideration and minimizes it.
URI: http://hdl.handle.net/11455/2238
其他識別: U0005-1308200921200500
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.