Please use this identifier to cite or link to this item:
標題: 孵卵時期環境溫度對斑龜蛋孵化、幼龜性別與雌雄體型二型性之影響
The Effects of Incubation Temperature on Egg Hatching, Sex Determination and Sexual Size Dimorphism in the Chinese Stripe-Necked Turtle, Ocadia sinensis
作者: 林奕甫
Lin, Yi-Fu
關鍵字: sexual size dimorphism;雌雄體型二型性;sex determination;growth rate;activity;Testudines;Ocadia sinensis;性別決定機制;成長率;活動力;龜鱉目;斑龜
出版社: 生命科學系所
引用: 林傑斌、林川雄、劉明德、飛捷工作室‧2004‧SPSS 12 統計建模 與應用實務‧博碩文化‧臺北、臺灣。 陳添喜‧1998‧臺灣北部地區斑龜(Ocadia sinensis)及食蛇龜(Cistoclemmys flavomarginata)生活史之研究‧臺灣師範大學博士論文‧臺北,臺灣。 黃俊英‧2000‧多變量分析‧中國經濟企業研究所‧臺北、臺灣。 Barth, D., Bernhard, D., Fritzsch, G. and Fritz, U. 2004. The freshwater turtle genus Mauremys (Testudines, Geoemydidae)- a textbook example of an east-west disjunction or a taxonomic misconcept? Zoologica Scripta 33(3): 213-221. Bull, J. J. 1980. Sex determination in reptiles. The Quarterly Review of Biology 55(1): 3-21. Bull, J. J. and Vogt, R. C. 1979. Temperature-dependent sex determination in turtles. Science 206: 1186-1188. Bull, J. J., Vogt, R. C. and McCoy, C. J. 1982. Sex determining temperatures in turtles: a geographic comparison. Evolution 36(2): 326-332. Burk, R. L., Ewert, M. A., McLemore, J. B. and Jackson, D. R. 1996. Temperature-dependent sex determination and hatching success in the Gopher tortoise (Gopherus polyphemus). Chelonian Conservation and Biology 2(1): 86-88. Burk, R. L., Jacobson, E. R., Griffith, M. J. and Guillette, L. J. 1994. Non-invasive sex identification of juvenile gopher and desert tortoises (genus Gopherus). Amphibia-Reptilia 15: 183-189. Carr, J. L. and Bickham, J. W. 1981. Sex chromosomes of the Asian black pond turtle Siebenrockiella crassicollis (Testudines: Emydidae). Cytogenetics and Cell Genetics 31: 178-183. Charnov, E. L., and Bull, J. 1977. When is sex environmentally determined? Nature 266:828-830. Choo, B. L. and Chou, L. M. 1987. Effect of temperature on the incubation period and hatchability of Trionyx sinesis Wiegmann eggs. Journal of Herpetology 21(3): 230-232. Ciofi, C. and Swingland, I. R. 1997. Environmental sex determination in reptiles. Applied Animal Behaviour Science 51(1997): 251-265. Conover, D. O. 1984. Adaptive significance of temperature-dependent sex determination in a fish. The American Naturalist 123(3):297-313. Crews, D. 2003. Sex determination: where environment and genetics meet. Evolution and Development 5(1): 50-55. Crews, D., Bergeron, J. M., Bull, J. J., Flores, D., Tousignant, A., Skipper, J. K. and Wibbels, T. 1994. Temperature-dependent sex determination in reptiles: proximate mechanisms, ultimate outcomes, and practical applications. Developmental Genetics 15: 297-312. Du, W.-G. and Ji, X. 2003. The effects of incubation thermal environments on size, locomotor performance and early growth of hatchling soft-shelled turtles, Pelodiscus sinensis. Journal of Thermal Biology 28: 279-286. Eendebak, B. T. 1995. Incubation period and sex ratio of Hermann’s tortoise, Testudo hermanni boettgeri. Chelonian Conservation and Biology 1(3): 227-231. Ewert, M. A., Hatcher, R. E. and Goode, J. M. 2004. Sex determination and ontogeny in Malacochersus tornieri, the Pancake tortoise. Journal of Herpetology. 38(2):291-295. Ewert, M. A., Jackson, D. R. and Nelson, C. E. 1994. Patterns of temperature-dependent sex determination in turtles. The Journal of Experimental Zoology 270: 3-15. Ewert, M. A. and Nelson, C. E. 1991. Sex determination in turtles: diverse patterns and some possible adaptive values. Copeia 1991(1): 50-69. Fairbairn, D. J. 1997. Allometry for sexual size dimorphism: pattern and process in the coevolution of body size in males and females. Annual Review of Ecology and Systematics 28: 659-687. Feldman, C. R. and Parham, J. F. 2002. Molecular phylogenetics of Emydine turtles: taxonomic revision and the evolution of shell kinesis. Molecular Phylogenetics and Evolution 22(3): 388-398. Freedberg, S., Stumpf, A. L., Ewert, M. A. and Nelson, C. E. 2004. Developmental environment has long-lasting effects on behavioural performance in two turtles with environmental sex determination. Evolutionary Ecology Research 6: 739-747. Georges, A. and McInnes, S. 1998. Temperature fails to influence hatchling sex in another genus and species of Chelid turtle, Elusor macrurus. Journal of Herpetology 32(4): 596-598. Head, G., May, R. M. and Pendleton, L. 1987. Environmental determination of sex in the reptiles. Nature 329: 198-199. Van Der Heiden, A. M., Briseño-Dueñas, R. and Rios-Olmeda, D. 1985. A simplifies method for determining sex in hatchling sea turtles. Copeia 1985(3): 779-782. Hou, L. 1985. Sex determination by temperature for incubation in Chinemys reevesii. Acta Herpetologica Sinica 4(2): 130. Iverson, J. B. and College, E. 1992. A revised checklist with distribution maps of the turtles of the world. Privately Printed, Richmond, Indiana, U.S.A.. Janzen, F. J. and Paukstis, G. L. 1991. Evironmental sex determinationñ in reptiles: ecology, evolution, and experimental design. The Quarterly Review of Biology 66(2): 149-179. Lagarde, F., Bonnet, X., Henen, B. T., Corbin, J., Nagy, K. A. and Naulleau, G. 2001. Sexual size dimorphism in steppe tortoises (Testudo horsfieldi): growth, maturity, and individual variation. Canadian Journal of Zoology 79: 1433-1441. Ling H. 1985. Sex determination by temperature for incubation in Chinemys reevesii. Acta Herpetologica Sinica 4(2):130. O’steen, S. 1998. Embryonic temperature influences juvenile temperature choice and growth rate in snapping turtles Chelydra serpentine. The Journal of Experimental Biology 201:439-449. Packard, G. C., Packard, M. J., Miller, K., and Boardman, T. J. 1987. Influence of moisture, temperature, and substrate on snapping turtle eggs and embryos. Ecology 68(4): 983-993. Pieau, C. and Dorizzi, M. 1981. Determination of temperature sensitive stages for sexual differentiation of the gonads in embryos of the turtle, Emys orbicularis. Journal of Morphology 170: 373-382. Plummer, M. V. 1979. Collecting and Marking. Pp. 45-72. In M. Harless and H. Morlock (Ed.), Turtles: Perspectives and Research. A Wiley-Interscience Publication, New York, U.S.A.. Pough, F. H., Andrews, R. M., Cadle, J. E., Crump, M. L., Savitzky, A. H., and Wells, K. D. 2004. Herpetology. Pearson Prentice Hall. Upper Saddle River, New Jersey, U.S.A.. Rhen, T., and Lang, J. W. 1995. Phenotypic plasticity for growth in the common snapping turtle: effects of incubation temperature, clutch, and their interaction. The American Naturalist 146(5):726-747. Rhen, T., and Lang, J. W. 1999. Temperature during embryonic and juvenile development influences growth in hatchling snapping turtles, Chelydra serpentine. Journal of Thermal Biology 24(1999):33-41. Roosenburg, W. M. 1996. Maternal condition and nest site choice: an alternative for the maintenance of environmental sex determination? American zoologist 36:157-168. Rostal, D. C., Wibbels, T., Grumbles, J. S., Lance, V. A. and Spotila, J. R. 2002. Chronology of sex determination in the Desert tortoise (Gopherus agassizii). Chelonian Conservation and Biology 4(2): 313-318. Shine, R., Elphick, M. J., and Harlow, P. S. 1995. Sisters like it hot. Nature 378:451-452. Spinks, P. Q., Shaffer, H. B., Iverson, J. B. and McCord, W. P. 2004. Phylogenetic hypothese for the turtle family Geoemydidae. Molecular Phylogenetics and Evolution 32: 164-182. Vogt, R. C. and Flores-Villela, O. 1992. Effects of incubation temperature on sex determination in a community of Neotropical freshwater turtles in southern Mexico. Herpetologica 48(3): 265-270. Webb, G. J. W., Choquenot, D. and Whitehead, P. J. 1986. Nests, eggs, and embryonic development of Carettochelys insculpta (Chelonia: Carettochelidae) from northern Australia. Journal of Zoology Series B 1: 521-550. Wibbels, T., Owens D. W. and Limpus, C. J. 2000. Sexing juvenile sea turtles: is there an accurate and practical method? Chelonian Conservation and Biology 3(4): 756-761. Wibbels, T., Wilson, C. and Crews, D. 1999. Műllerian duct development and regression in a turtle with temperature-dependent sex determination. Journal of Herpetology 33(1): 149-152. Wilbur, H. M., and Morin, P. J. 1994. Life history evolution in turtles. Pp. 387-439. In C. Gans (Ed.), Biology of the Reptilia, Vol. 16 Branta Books, Ann Arbor, Michigan, U.S.A.. Yntema, C. L. 1981. Characteristics of gonads and oviducts in hatchlings and young of Chelydra serpentine resulting from three incubation temperatures. Journal of Morphology 167: 297-304. Yntema, C. L. 1976. Effects of incubation temperatures on sexual differentiation in the turtle, Chelydra serpentine. Journal of Morphology 150: 453-462. Young, J. E., Georges, A., Doody J. S., West, P. B. and Alderman, R. L. 2004. Pivotal range and thermosensitive period of the pig-nosed turtle, Carettochelys insculpta (Testudines: Carettochelydidae), from northern Australia. Canadian Journal of Zoology 82: 1251-1257.
爬蟲類中,普遍存在著雌雄體型二型性(sexual size dimorphism, SSD)及溫度決定性別(temperature sex determination, TSD)的現象。造成SSD的原因,除了出生時體型大小、幼體及成體時期成長率、成熟所需體型大小及年紀等外,孵卵時期環境溫度也可能造成雌雄體型的差異。前人研究顯示高溫孵出個體體型較大,低溫孵出者體型較小,因此TSD種類所表現的SSD,可能也與孵化溫度有關
臺灣四種淡水龜科中,斑龜(Ocadia sinensis)性別決定機制尚未知。斑龜成龜體型為雌龜大於雄龜。因此本研究選擇斑龜為實驗對象,希望瞭解其性別決定機制,及瞭解孵卵時期溫度與成長率、活動力等之關係。
結果顯示,斑龜屬於TSD物種,孵卵時期環境溫度為30℃及32℃時,皆孵出雌龜;而24℃時,孵出之幼龜皆為雄龜。32℃時所需的孵化天數最短(46.1 ± 1.6天),24℃所需的天數最長(90.8 ± 2.6天)。孵化成功率及出生體型大小,不受孵卵時期溫度影響。

Sexual size dimorphism (SSD) and temperature sex determination (TSD) are common in some reptile groups (e.g. turtles and crocodiles). SSD may result from hatchling size differences, juvenile and adult growth rates, age and size at maturity, and incubating temperatures. It has been demonstrated that eggs incubated in high temperatures produce larger hatchlings, it is possible that SSD found in TSD species may result from the difference in incubation temperature.
Among the four batagurid turtles found in Taiwan, the sex determination mode of the Chinese Stripe-Necked Turtle, Ocadia sinensis, is unknown. It is known that the size of females is larger than that of males in this species. In this research, I plan to determine the sex-determination mechanism of Ocadia sinensis, and, to understand the relationship between incubation temperature of eggs and juvenile growth rate and activity performance.
I designed incubation experiments at five different temperatures (24℃、26℃、28℃、30℃、32℃) in order to determine the effects of incubation temperature on hatching success, sex ratio, hatchling body size, activity performance, and juvenile growth rate.
I demonstrated that Ocadia sinensis is a TSD species; at incubating temperatures of 30℃ and 32℃, all hatchlings are females; all hatchlings are males when eggs are incubated at 24℃. Eggs hatched the fastest when incubated at 32℃ (46.1 ± 1.6 days), longest when at 24℃ (90.8 ± 2.6 days). Hatching success and the size of hatchlings are not influenced by incubation temperatures..
The activity performance of juveniles hatching at higher temperatures is higher than those hatching from lower temperature. Growth rate is faster in individuals hatching from high temperatures. There is no significant difference between individual growth rate and size of hatchling or activity performance of juveniles.
Since growth rate is faster in high incubation temperatures than in low temperatures, incubation temperature could be one of the factors that cause SSD. However, there is no significant within-sex difference in growth rate among hatchlings incubated at different temperatures. It indicates that gender itself is one of the factors that influence growth rate.
其他識別: U0005-2607200615134000
Appears in Collections:生命科學系所

Show full item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.