Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/22497
標題: 利用穩定性碳與氮同位素探討蘭陽溪食物網結構與影響之環境因子
Using the stable carbon and nitrogen isotopes to construct trophic structures of Lanyang River and to explore the influencing environmental factors
作者: 張玄勳
Chang, Hsuan-Hsun
關鍵字: Lanyang River;蘭陽溪;δ13C;δ15N;food sources;disturbance;water velocity;穩定碳;氮同位素;食物來源;干擾;流速
出版社: 生命科學系所
引用: 王雅亭 (2002) 利用穩定同位素追蹤河口食碎屑魚種食物來源。國 立中興大學植物學研究所碩士論文。 李培芬 (2004) 蘭陽溪河系河川情勢調查。經濟部水利署水利規劃 試驗所。 林幸助,邵廣昭,吳聲海,馬堪津,高文媛,陳章波,曾晴賢,黃 將修,詹榮桂,劉莉蓮 (2004) 蘭陽溪流域與河口生態系食物網 的動態鏈結。中央研究院生物多樣性研究中心。 林幸助,邵廣昭,吳聲海,馬堪津,高文媛,陳義雄,黃將修,劉 莉蓮 (2005) 蘭陽溪流域與河口生態系食物網的動態鏈結。中央 研究院生物多樣性研究中心。 吳貞誼 (2004) 人為營養鹽輸入對墾丁沿岸大型海藻群集之影響。 國立中興大學生命科學系碩士論文。 林孟龍 (2000) 颱風對於蘭陽溪上游集水區懸移質生產特性的影響。國立台灣大學 地理學研究所碩士論文。 邵廣昭,陳義雄,張沔,鄭又華,施佳宏 (2005) 蘭陽溪流域與河口生態系食物網 的動態鏈結,子計畫十:魚類相及生態。94 年期末報告。中央研究院生物多樣 性研究中心。 張長義 (1992) 蘭陽地理鄉土教材。宜蘭縣政府。 陳昱凱 (2006) 蘭陽溪流域有機物通量及颱風之影響。國立中興大學生命科學系碩 士論文。 陳樹群 (2002) 台灣地區河川型態調查研究。經濟部水利署水利規劃試驗所。 黃乙玉 (2002) 亞熱帶森林源頭溪流哈盆溪食物網之研究-穩定碳氮同位素分析之 應用。國立台灣大學動物所碩士論文。 黃元照 (2002) 海岸底棲食碎屑蟹類對有機物質來源的選擇性利用:穩定碳、氮同 位素分析應用。國立台灣大學漁業科學研究所碩士論文。 葉秋妤 (2005) 台灣沿海濕地草澤之植群生態調查。國立中山大學生物科學系碩士 論文。 溫珮珍 (2005) 武陵地區水溫與營養鹽添加對溪流淺流區石附生藻類之影響。國立 中興大學生命科學系碩士論文。 Allan, JD (1995) Stream ecology. Chapman and Hall, London, UK. Bearhop S, Waldron S, Votier SC, Furness RW (2002) Factors that influence assimilation rates and fractionation of nitrogen and carbon stable isotopes in avian blood and feathers. Physiological and Biochemical Zoology 75:451-458 Ben-David M, Hanley TA, Klein DR, Schell DM (1997) Seasonal changes in diets of coastal and riverine mink: the role of spawning Pacific salmon. Canadian Journal of Zoology. 75: 803-811 Boutton TW (1991) Carbon isotope techniques.pp173-185 In: Coleman DC, Fry B, eds. Carbon isotope techniques. Academic Press, San Diego, U.S.A. Cabana G, Rasmussen JB (1996) Comparison of aquatic food chains using nitrogen isotope. Proceeding of the National Academy of Sciences of the United States of America 93: 10844-10847 Chen PH, Gong GC, Pai SC, Liu KK (1992) Analysis of nitrate in seawater using and automated FIA. Biogeochemical Research Log, Edited by Liu KK, 1: 34-36 Clarke KR, Warwick RM (2001) Change in Marine Communities: An Approach to Statistical Analysis and Interpretation. 2nd edition: PRIMER-E, Plymouth, UK, Page 9-2 Cline LD, Short RA, Ward JV (1982) The influence of highway construction on the macroinvertebrates and epilithic algae of a high mountain stream. Hydrobiologia 96:149-159 Connolly RM, Gorman D, Guest MA (2005) Movement of carbon among estuarine habitats and its assimilation by invertebrates. Oecologia 144:684-691 Day Jr. JW, Hall CAS, Kemp WM, Yanez-Arancibia A (1989) Estuarine ecology. John Wiley & Sons. Inc. pp.18-28 Delong MD, Thorp JH (2006) Signification of instream autotrophs in trophic dynamics of the upper Mississppi River. Oecologia 147:76-85 Doi H, Kikuchi E, Mizota C, Satoh N, Shikano S, Yurlov N, Yadrenkina E, Zuykova E (2004) Carbon, nitrogen, and sulfur isotope changes and hydro-geological processes in a saline lake chain. Hydrobiologia 529: 225–235 Doucett RR, Power G, Barton DR, Drimmie RJ, Cunjak RA (1996) Stable isotope analysis of nutrient pathways leading to Atlantic salmon. Canadian Journal of Fisheries and Aquatic Sciences 53: 2058–2066 Edwards PA, Cunjak RA (2006) Influence of water temperature and streambed stability on the abundance and of slimy sculpin (Cottus cognatus). Environmental Biology of Fishes. In press. England LE, Rosemond AD (2004) Small reductions in forest cover weaken terrestrial-aquatic linkages in headwater stream. Freshwater Biology 49:721-734 Evans RD (2001) Physiological mechanisms influencing plant nitrogen isotope composition . Trend in Plant Science 6:121-126 Finlay JC (2001) Stable-Carbon-Isotope Ratios of River Biota: Implications for Energy Flow in Lotic Food Webs. Ecology 82:1052-1064 Fry B, Sherr EB (1989) δ13C Measurements as indicators of carbon flow in marine and freshwater ecosystems. Contribution in Marine Science 27:13-47 Füreder L, Camille W, John KJ (2003) Dietary and stable isotope (δ13C , δ15N) analyses in Alpine stream insects. Internat. Rev. Hydrobiol. 88:314-331 Galimov EM (2006) Isotope organic geochemistry. Organic Geochemistry 37:1200-1262 Goñi MA, Teixeira MJ, Perkey DW (2003) Sources and disturibution of organic matter in a river-dominated estuary (Winyah Bay, SC, USA). Estuarine, Coastal and Shelf Science 57:1023-1048 Hershey AE, Pastor J, Peterson BJ, Kling GW (1993) Stable isotopes resolve the deift paradox for Baetis mayflies in an arctic river. Ecology 74:2315-2325 IAEA-TECDOC-825 (1995) Reference and intercomparison materials for stable isotopes of light elements, Proceedings of a Consultants Meeting held in Vienna, 1-3 Dec 1993, pp.13-29 Jacob U, Mintenbeck K, Brey T, Knust R, Beyer K (2005) stable isotope food web studies: a case for standardized sample treatment. Marine Ecology Progress Series 287:251-253 Junk WJ and Wantzen KM (2004) The Flood Pulse Concept: New Aspects, Approaches, And Applications – an Update. In: Welcomme RL & Petr T (eds.): Proceedings of the Second International Symposium on the Management of Large Rivers for Fisheries, Volume 2. Food and Agriculture Organization & Mekong River Commission. FAO Regional Office for Asia ans the Pacific, Bangkok. pp.117-149 Kao SJ, Liu KK (2000) Stable carbon and nitrogen isotope systematics in a human-disturbed watershed (Lanyang-Hsi) in Taiwan and the estimation of biogenic particulate organic carbon and nitrogen fluxs. Global biogeochemical cycles 14:189-198 Kao SJ, Liu KK (2002) Exacerbation of erosion induced by human perturbation in a typical oceania watershed: insight from 45 years of hydrological records from the Lanyyang-His river, northeastern Taiwan. Global Biogeochemical cycles 16: 16.1-16.7 Kline TC, Goering JJ, Mathisen OA, Poe PH (1993) Recycling of elements transported upstream by runs of pacificsalmon: II. δ15N and δ13C evidence in the Kvichak River watershed, Bristol Bay, Southwestern Alaska. Canadian Journal of Fisheries and Aquatic Science 50:2350-2365 Kobayashi S, Kagaya T (2002) Differences in litter characteristics and macroinvertebrate assemblages between litter patches in pool and riffles in a headwater stream. The Japanese Society of Limnology 3:37-42 Lajtha K, Marshall JD (1994) Sources of variation in the stable isotopic composition of Plants. pp.1-21 In: Lajtha K, Michener RH, eds. Methods in ecology: stable isotopes in ecology and environmental science. Blackwell Scientific Publications, U.S.A. Lamberti GA, Gregory SV, Ashkenas LR, Wildman RC, Moore KMS (1991) Stream ecosystem recovery following a catastrophic debris flow. Canadian Journal of Fisheries and Aquatic Sciences 48:196-208 Lepori F, Palm D, Malmqvist B (2005) Effects of stream restoration on ecosystem functioning:detritus retentiveness and decomposition. Journal of Applied Ecology 42:228–238 Lobry J, Lepage M, Rochard E (2006) From seasonal patterns to a reference situation in an estuarine environment: Example of the small fish and shrimp fauna of the Gironde estuary (SW France). Estuarine, Coastal and Shelf Science 70:239-250 Lytle DA, Poff NL (2004) Adaptation to natural flow regimes. Trends in Ecology and Evolution 19:94-100 Marks JC, Power ME, Parker MS (2000) Flood disturbance, algal productivity, and interannual variation in food chain length.OIKOS 90:20-27 McCtchan JH Jr, Lewis WM Jr, Kendall C, McGrath CC (2003) Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. OIKOS 102:378-390 Melville AJ, Connolly RM (2003) Spatial analysis of stable isotope data to determine primary sources of nutrition for fish. Oecologia 136:499-507 Michener RH, Schell DM (1994) Stable isotope ratios as tracers in marine aquatic food webs. In: Lajtha K, Michener RH (eds) Stable isotopes in ecology and environmental science. Blackwell Scientific Publications, London, p138-157 Milliman JD, Syvitski JPM (1992) Geomorphic/Tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. The jounal of Geology 100: 525-544 Murphy J, Riley JP (1962) A modified single solution method for determination of phosphate in nature water. Anal Chem Acta 27:31-36 Paetzold A, Schubert CJ, Tockner K (2005) Aquatic terrestrial linkages along a braided-river: riparian arthropods feeding on aquatic insects. Ecosystems 8:748-759 Pai SC, Riley JP (1994) Determination of nitrate in the presence of nitrate in nature waters by flow injection analysis with a non-quantitative on-line Cadmium redactor. Intern J Environ Anal Chem 57:263-277 Pai SC, Tsau YJ, Yang TI (2001) pH and buffering capacity problems involved in the determination of ammonia in saline water using the indophenol blue spectrophotometric method. Anal Chem Acta 434:209-216 Pai SC, Yang CC (1990) Formation kinetics of the pink azo dye in the determination of nitrite in nature waters. Anal Chem Acta 232:345-349 Parson TR, Maita Y, Lalli CM (1984a) A Manual of Chemical and biological Method of Seawater Analysis. Pergamon Press, New York, USA 1sted, 3-7 Parson TR, Maita Y, Lalli CM (1984b) A Manual of Chemical and biological Method of Seawater Analysis. Pergamon Press, New York, USA 1sted, 7-9 Parson TR, Maita Y, Lalli CM (1984c) A Manual of Chemical and biological Method of Seawater Analysis. Pergamon Press, New York, USA 1sted, 14-17 Parkyn SM, Collier KJ, Hicks BJ (2001) New Zealand stream crayfish: functional omnivores but trophic predators? Freshwater Biology 46:641–652 Parkyn SM, Collier KJ (2004) Interaction of press and pluse disturbance on cayfish populations: flood impacts in pasture and forest streams. Hydrobiologia 527:113-124 Peterson BJ, Fry B(1987)Stable isotope in ecosystem studies.Annual Review Ecology and Systematics 18:293-320 Phillips DL (2001) Mixing models in analyses of diet using multiple stable isotopes: a critique. Oecologia 127:166-170 Phillips DL, Koch PL (2002) Incorporating concentration dependence in stable isotope mixing models. Oecologia 130:114-125 Phillips DL, Gregg JW (2003) Source partitioning using stable isotopes: coping with too many sources. Oecologia 136:261-269 Pimm SL, Kitching RL (1987) The determinants of food chain lengths. OIKOS 50: 302–307 Poff NL, Allan D, Bain MB, Karr JR, Prestegaard KL, Richter BD, Parks RE, Stromberg JC (1997) The nature flow regime. BioScience 47: 769-784 Post DM, Pace ML, Hairston NG Jr (2000) Ecosystem size determines food-chain length in lakes. Nature 405:1047-1049 Post DM (2002a) The long and short of food-chain length.Trends in Ecology and Evolution 17:269-277 Post DM (2002b) Using stable isotopes to estimate trophic position : models, methods, and assumptions. Ecology 83:703-718 Power ME (1990) resource enhancement by indirect effects of grazer: armored catfish, algae, and sediment. Ecology 71:897-904 Resh VH, Brown AV, Covich AP, Gurtz ME, Li HW, Minshall GW, Reice SR, Sfeldon AL, Wallace JB, Wissmar RC (1988) The role of disturbance in stream ecology. Journal of North American Benthological Society 7:433-455 Ruetz CR III, Raymond MN, Bruce V (2002) Top-down control in a detritus based food web: fish, shredders, and leaf breakdown. Oecologia132:307-315 Spellman FR, Drinan JE (2001) Stream ecology & Self-purification. Technomic, U.S.A. Tew KS, Han CC, Chou WR, Fang LS (2002) Habitat and fish fauna structure in a subtropical mountain stream in Taiwan before and after a catastrophic typhoon. Environmental Biology of Fishes 65:457-462 Thompson RM, Townsend CR (2005) Energy availability, spatial heterogeneity and ecosystem size predict food-web structure in streams. OIKOS 108:137-148 Thomas JK, Zedler JB (1997) Food web analysis of southern California coastal wetlands using multiple stable isotoes. Oecologia 110: 262-277 Vander Zanden MJ, Cabana G, Rasmussen JB (1997) Comparing trophic position of freshwater fish calculated using stable nitrogen isotope ratios (δ15N) and literature dietary data. Canadian Journal of Fisheries and Aquatic Sciences 54: 1142-1158 Vander Zanden MJ, Rasmussen JB (1999) Primary consumer δ13C and δ15N and the trophic position of aquatic consumer. Ecology 80:1395-1404 Vander Zanden MJ, Shuter BJ, Lester N, Rasmussen BJ (1999) Patterns of food chain length in lakes : a stable isotope study. The American Naturalist 154:406-416 Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE (1980) The river continuum concept. Canadian Journal of Fisheries and Aquatic Science 37:130-137 Wallace JB, Eggert SL, Meyer JL, Webster JR (1997) Multiple trophic levels of a forest stream linked to terrestrial litter inputs. Science 277 :102-104 Wallace JB, Webster JR, Cuffney TF (1982) Stream detritus dynamic: regulation by invertebrate consumers. Oecologia 53:197-200 Ward JV (1998) Riverine landscapes: biodiversity patterns, disturbance regimes, and aquatic conservation. Biological Conservation 83:269-278 Winemiller KO, Jepsen DB (1998) Effects of seasonality and fish movement on tropical river food webs. Journal of Fish Biology 53 :267–296 Woodward G, Hildrew AG (2002) Food web structure in riverine landscapes. Freshwater Biology 47:777-798
摘要: 
本研究利用穩定碳、氮同位素分析法,架構蘭陽溪流域溪流食物網,並探討各個食物網的可利用碳源以及營養階層,進一步分析探討環境因子對於食物網的影響。
蘭陽溪流域環境因子的主成份分析顯示,環境因子沒有月份間差異;但測站可以區分為主流以及支流之不同,主要區分的環境因子為總懸浮物質以及流速,主流測站有較多的總懸浮物質,以及較快的流速。蘭陽溪流域基礎能量來源的δ15N 值較哈盆溪重,顯示有人為污水影響。穩定性碳、氮同位素分析發現;主
流的食物網結構較支流鬆散,推測可能是因為主流在高流速的環境下生物較少;在上游鬱閉的支流消費者以粗顆粒有機碎屑以及細顆粒有機碎屑為主要食物來源,較開闊的下游支流則以附生藻類以及細顆粒有機碎為主,符合河川續動學說的推論。但是主流則因為環境不穩定,所以在當地所採集的消費者並沒有直接利用當地食物來源的情形發生。河口的細顆粒有機碎屑訊號,顯示大部分比例為陸
源輸入,代表在河口陸源輸入較海源重要。
本研究顯示溪水流速是干擾蘭陽溪流域的主要環境因子,溪水流速造成的影響主要反映在δ15N 差值上,但流速對於溪流食物鏈長度的影響,於本研究並不顯著。

This research utilizes stable carbon and nitrogen isotopes to construct the foodwebs of the Lanyang River and to explore the influencing environmental factors.
PCA analysis of the environmental factor of the study sites in the Lanyang Rivershow no temporal, but spatial differences. The most important factors are total suspended matter (TSM) and water velocity. The enrichment of δ15N of primaryproducers indicates the influence of human sewage. The structure of food web is looser in the main-stream in comparison to that of tributary, suggesting that the unstable environment with high water velocity may cause less abundance of biotathere. Coarse particulate organic matter (CPOM) and fine particulate organic matter
(FPOM) were the major food sources for consumers in the upper tributary. In contrast,periphyton and FPOM were the major food sources for consumer in lower tributary.
In the main stream, the speculative food sources appeared not contributing to consumers there which may be due to the unstable environment. Analysis of stable isotope ratio of the FPOM, suggests that the terrestrial carbon sources were more important than oceanic carbon sources in contributing to the estuary FPOM.
The main disturbance to the main stream is water velocity, δ15N value shifted with velocity effect. Increasing water velocity appeared to decrease the abundance of biota, but had lilltle effect on the length of food chain.
URI: http://hdl.handle.net/11455/22497
其他識別: U0005-0706200717243900
Appears in Collections:生命科學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.