Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2256
標題: T 型流道中微流體乳化現象數值模擬與分析
Numerical study of microfluidic emulsion in T-junction
作者: 劉忠敏
Liu, Chung-Min
關鍵字: two-phase flow;兩相流;emulsion droplet;T-junction;乳化微液滴;T 型流道
出版社: 機械工程學系所
引用: Munson, B. R., Young, D. F. & Okiishi, T. H. (2006). Fundamentals of Fluid Mechanics. New York: Wiley. Chang, C. & Yang, R. (2007). Electrokinetic mixing in microfluidic systems. Microfluidics and Nanofluidics, 3(5), 501-525. Cheong, R., Wang, C. J. & Levchenko, A. (2009). High content cell screening in a microfluidic device. Molecular & Cellular Proteomics: MCP, 8(3), 433-442. Christopher, G. F. & Anna, S. L. (2007). Microfluidic methods for generating continuous droplet streams. Journal of Physics D: Applied Physics 19(40), R319-R336. De Menech, M., Garstecki, P., Jousse, F. & Stone, H. A. (2008). Transition from squeezing to dripping in a microfluidic T-Shaped junction. Journal of Fluid Mechanics, 595(1), 141-161. Dreyfus, R., Tabeling, P. & Willaime, H. (2003). Ordered and disordered patterns in two-phase flows in microchannels. Physical Review Letters, 90(14), 144505. Haeberle, S. & Zengerle, R. (2007). Microfluidic platforms for lab-on-a-chip applications. Lab on a Chip, 7(9), 1094-1110. Hui, W. C., Yobas, L., Samper, V. D., Heng, C., Liw, S., Ji, H. et al. (2007). Microfluidic systems for extracting nucleic acids for DNA and RNA analysis. Sensors and Actuators A: Physical, 133(2), 335-339. Lee, C. Y., Yu, H. & Kim, E. S. (2007). Harmonic Operation of Acoustic Transducer for Droplet Ejection Application. Solid-State Sensors, Actuators and Microsystems Conference, 2007. TRANSDUCERS 2007. International, 1283-1286. Lee, J., Lim, K. G., Palmore, G. T. R. & Tripathi, A. (2007). Optimization of microfluidic fuel cells using transport principles. Analytical Chemistry, 79(19), 7301-7307. Liow, J. L. (2004). Numerical simulation of drop formation in a T-shaped microchannel. Proceedings of 15th Australasian Fluid Mechanics Conference 2004, 13-17. Miller, E. M. & Wheeler, A. R. (2008). A digital microfluidic approach to homogeneous enzyme assays. Analytical Chemistry, 80(5), 1614-1619. Monat, C., Domachuk, P. & Eggleton, B. J. (2007). Integrated optofluidics: A new river of light. Nat Photon, 1(2), 106-114. Nisisako, T., Okushima, S. & Torii, T. (2005). Controlled formulation of monodisperse double emulsions in a multiple-phase microfluidic system. Soft Matter, 1(1), 23-27. Nisisako, T., Torii, T. & Higuchi, T. (2002). Droplet formation in a microchannel network. Lab on a Chip, 2(1), 24-26. Nisisako, T., Torii, T. & Higuchi T. (2004). Novel microreactors for functional polymer beads. Chemical Engineering Journal, 1-3(101), 23-29. Oh, J. K., Drumright, R., Siegwart, D. J. & Matyjaszewski, K. (2008). The development of microgels/nanogels for drug delivery applications. Progress in Polymer Science, 33(4), 448-477. Pamme, N. (2007). Continuous flow separations in microfluidic devices. Lab on a Chip, 7(12), 1644-1659. Shui, L., Eijkel, J. C. T. & van den Berg, A. (2007). Multiphase flow in microfluidic systems - control and applications of droplets and interfaces. Advances in Colloid and Interface Science, 133(1), 35-49. Shui L., van den Berg, A. & Eijkel J. C. T. (2009). Interfacial tension controlled W/O and O/W 2-phase flows in microchannel. Lab on a Chip, 12(9), 795-801. Tan, J., Xu, J., Li, S. & Luo, G. (2007). Drop dispenser in a cross-junction microfluidic device: Scaling and mechanism of break-up. Chemical Engineering Journal, 136(2-3), 306-311. Teh, S., Lin, R., Hung, L. & Lee, A. P. (2008). Droplet microfluidics. Lab on a Chip, 8(2), 198-220. Thongboonkerd, V., Songtawee, N. & Sritippayawan, S. (2007). Urinary proteome profiling using microfluidic technology on a chip. Journal of Proteome Research, 6(5), 2011-2018. Thorsen, T., Roberts, R. W., Arnold, F. H. & Quake, S. R. (2001). Dynamic pattern formation in a vesicle-generating microfluidic device. Physical Review Letters, 86(18), 4163-4166. Whitesides, G. M. (2006). The origins and the future of microfluidics. Nature, 442(7101), 368-373. Xu, J. H., Luo, G. S., Li, S. W. & Chen, G. G. (2005). Shear force induced monodisperse droplet formation in a microfluidic device by controlling wetting properties. Lab on a Chip, 6(1), 131-136.
摘要: 
本研究利用三維有限體積數值方法配合 Volume of fluid 模型模擬兩相流體於 T 型流道中生成乳化液滴的現象。乳化過程乃消散相流體分散於另一不相溶之連續相流體中。本模擬以油為連續相流體,水為消散相流體。我們觀察乳化液滴體積與生成頻率隨著連續相與消散相流速及流道尺寸變化的關係。這些參數範圍分別為,連續相流速 Uc = 0.033 – 0.161 m/s、消散相流速 Ud = 0.002 – 0.041 m/s,而流道截面尺寸為 50 um×50 um 與 100 um×100 um。在此流速範圍內,兩種流道生成的液滴直徑與流道水力直徑之比值相當接近,為 0.5 – 1.2 倍之間;在較小流道中最大生成頻率高達 3790 s-1,而在較大流道中最大生成頻率則為 2225 s-1。本研究發展出精確計算乳化液滴體積的量測方法,並發現液滴直徑和生成頻率皆與 Uc(Uc/Ud)0.5 呈指數關係。

This paper reports numerical results of droplet generation through a microchannel having a T-shape junction with uniform cross sections of 50 um×50 um and 100 um×100 um. Oil (Continuous phase) and water (Dispersed phase) are injected into the T-junction inlets to form water-in-oil emulsions for velocities ranging from Uc = 0.033 - 0.161 m/s and Ud = 0.002 - 0.041 m/s, respectively. The volume of fluid scheme was employed in the simulations to identify the oil-water interface. In the preset velocity ranges, the ratio of droplet diameter to channel hydraulic diameter appears to be nearly 0.8±0.3. Further comparisons show that the droplet diameter and production rate may correlated with the velocity ratio Uc(Uc/Ud)0.5 as a power law. It is found that the droplet generation frequency can reach as much as 3790 s-1 for the narrower channel while the frequency for the wider channel is at 2225 s-1.
URI: http://hdl.handle.net/11455/2256
其他識別: U0005-1607200915132700
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.