Please use this identifier to cite or link to this item:
標題: 廣鹽性虱目魚馴養於不同鹽度環境中鰓上Na+/K+-ATPase α-subunit isoforms之表現變化
Switches of Na+/K+-ATPase α-subunit isoforms in gills of milkfish (Chanos chanos) acclimated to environments of different salinities
作者: 邱鈺惠
Chiu, Yu-Hui
關鍵字: Gill;鰓;milkfish;Na+/K+-ATPase alpha-subunit;鹽度;虱目魚;鈉鉀幫浦
出版社: 生命科學系所
引用: Bagrinao, T., 1994. Systematics, distribution, genetics and life history of milkfish, Chanos chanos. Environ. Biol. Fish. 39, 23-41. Blanco, G., Mercer, R.W., 1998. Isozymes of the Na-K-ATPase: heterogeneity in structure, diversity in function. Am. J. Physiol. 275, F633-F650. Blanco, G., Sanchez, G., Mercer, R.W., 1995. Comparison of the enzymatic properties of the Na,K-ATPase α3β1 andα3β2 isozymes. Biochemistry. 34, 9897-9903. Blasiole, B., Canfield, V., Degrave, A., Thisse, C., Thisse, B., Rajarao, J., Levenson, R., 2002. Cloning, mapping, and developmental expression of a sixth zebrafish Na, K-ATPase α1 subunit gene (atp1a1a.5). Gene Expr. Patterns 2, 243-246. Brauer, P.R., Sanmann, J.N., Petzel, D.H., 2005. Effects of warm acclimation on Na+, K+-ATPase alpha-subunit expression in chloride cells of Antarctic fish. Anat. Rec. A 285, 600-609. Bystriansky, J.S., Richards, J.G., Schulte, P.M., Ballantyne, J.S., 2006. Reciprocal expression of gill Na+/K+-ATPase α-subunit isoforms α1a and α1b during seawater acclimation of three salmonid fishes that vary in their salinity tolerance. J. Exp. Biol. 209, 1848-1858. Bystriansky, J.S., Frick, N.T., Richards, J.G., Schulte, P.M., Ballantyne, J.S., 2007a. Failure to up-regulated gill Na+, K+-ATPase α-subunit isoforms α1b may limit seawater tolerance of land-locked Arctic char (Salvelinus alpinus). Comp. Biochem. Physiol. A 148, 332-338. Bystriansky, J.S., Frick, N.T., Richards, J.G., Schulte, P.M., Ballantyne, J.S., 2007b. Wild arctic char (Salvelinus alpinus) upregulate gill Na+, K+-ATPase during freshwater migration. Physiol. Biochem. Zool. 80, 270-282. Caberoy, N.B., Quinitio, G.F., 2000. Changes in Na+,K+-ATPase activity and gill chloride cell morphology in the grouper Epinephelus coioides larvae and juveniles in response to salinity and temperature. Fish Physiol. Biochem. 23, 83-94. Canfield, V.A., Loppin, B., Thisse, B., Thisse, C., Postlethwait, J.H., Mohideen, M.A., Rajarao, S.J., Levenson, R., 2002. Na, K-ATPase α and β subunit genes exhibit unique expression patterns during zebrafish embryogenesis. Mech. Dev. 116, 51-59. Choe, K.P., O'Brien, S., Evans, D.H., Toop, T., Edwards, S.L., 2004. Immunolocalization of Na+/K+-ATPase, carbonic anhydrase II, and vacuolar H+-ATPase in the gills of freshwater adult lampreys, Geotria australis. J. Exp. Zool. Part A Comp. Exp. Biol. 301, 654-665. Ciccotti, E., Marino, G., Pucci, P., Cataldi, E., Cataudella, S., 1994. Acclimation trial of Mugil cephalus juveniles to freshwater: morphological and biochemical aspects. Environ. Biol. Fish. 43, 163-170. Crambert, G., Hasler, U., Beggah, A.T., Yu, C., Modyanov, N.N., Horisberger, J.D., Lelievre, L., Geering, K., 2000. Transport and pharmacological properties of nine different human Na, K-ATPase isozymes. J. Biol. Chem. 275, 1976-1986. Crear, D., 1980. Observations on the reproductive state of milkfish populations (Chanos chanos) from hypersaline ponds on Christmas Island (Pacific Ocean). Proc. World Maricul. Soc. 11, 548-566. Cutler, C.P., Sanders, I.L., Hazon, N., Cramb, G., 1995. Primary sequence, tissue specificity and expression of the Na+, K+-ATPase alpha 1 subunit in the European eel (Anguilla anguilla). Comp. Biochem. Physiol. B 111, 567-573. D'Cotta, H.C., Valotaire, C., Le Gac, F., Prunet, P., 2000. Synthesis of gill Na, K-ATPase in Atlantic salmon smolts: differences in α-mRNA and α-protein levels. Am. J. Physiol. 278, R101-R110. Eakle, K.A., Kabalin, M.A., Wang, S.G., Farley, R.A., 1994. The influence of β subunit structure on the stability of Na+/K+-ATPase complexes and interaction with K+. J. Biol. Chem. 269, 6550-6557. Eakle, K.A., Lyu, R.M., Farley, R.A., 1995. The influence of β subunit structure on the interaction of Na+/K+-ATPase complexes with Na+. A chimeric β subunit reduces the Na+ dependence of phophoenzyme formation from ATP. J. Biol. Chem. 270, 13937-13947. Epstein, F.H., Katz, A.I., Pickford, G.E., 1967. Sodium- and potassium-activated adenosine triphosphatase of gills: role in adaptation of teleosts to salt water. Science. 156, 1245-1247. Evans, D.H., Piermarini, P.M., Choe, K.P., 2005. The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol. Rev. 85, 97-177. Fan, H.W., 2005. Na+-K+-ATPase expression in gills of milkfish (Chanos chanos) adapted environments of various salinities. Master thesis. Department of Life Science, National Chung Hsing University. Feng, S.H., Leu, J.H., Yang, C.H., Fang, M.J., Huang, C.J., Hwang, P.P., 2002. Gene expression of Na+-K+-ATPase α1 and α3 subunits in gills of the teleost Oreochromis mossambicus, adapted to different environmental salinities. Mar. Biotechnol. 4, 379-391. Guynn, S.R., Scofield, M.A., Petzel, D.H., 2002. Identification of mRNA and protein expression of the Na/K-ATPase α1-, α2- and α3-subunit isoforms in Antarctic and New Zealand nototheniid fishes. J. Exp. Mar. Biol. Ecol. 273, 15-32. Hansen, O., 1999. Heterogeneity of Na+/K+-ATPase from rectal gland of Squalus acanthias is not due to alpha isoform diversity. Pflugers Arch. 437, 517-522. Herrera, V.L., Emanuel, J.R., Ruiz-Opazo, N., Levenson, R., Nadal-Ginard, B., 1987. Three differentially expressed Na/K-ATPase alpha-subunit isoforms: structural and functional implications. J. Cell Biol. 105, 1855-1865. Hirose, S., Kaneko, T., Naito, N., Takei, Y., 2003. Molecular biology of major components of chloride cells. Comp. Biochem. Physiol. B 136, 593-620. Hootman, S.R., Philpott, C.W., 1985. Accessory cells in teleost branchial epithelium. Am. J. Physiol. 238, R199-R206. Hwang, P.P., Lee, T.H., 2007. New insights into fish ion regulation and mitochondrion-rich cells. Comp. Biochem. Physiol. A 148, 479-497. Hwang, P.P., Sun, C.M., Wu, S.M., 1989. Changes of plasma osmolality, chloride concentration and gill Na+-K+-ATPase activity in tilapia Oreochromis mossambicus during seawater acclimation. Mar. Biol. 100, 625-627. Hwang, P.P., Fang, M.J., Tsai, J.C., Huang, C.J., Chen, S.T., 1998. Expression of mRNA and protein of Na+-K+-ATPase α subunit in gills of tilapia (Oreochromis mossambicus). Fish. Physiol. Biochem. 18, 363-373. Ip, Y.K., Lee, C.Y., Chew, S.F., Low, W.P., Peng, K.W., 1993. Differences in the responses of two mudskippers toterrestrial exposure. Zool. Sci. 10, 511-519. Jensen, M.K., Madsen, S.S., Kristiansen, K., 1998. Osmoregulation and salinity effects on the expression and activity of Na+, K+-ATPase in the gills of European sea bass, Dicentrarchus labrax (L.). J. Exp. Zool. 282, 290-300. Jewell-Motz, E.A., Lingrel, J.B., 1991. Comparison of the substrate dependence properties of the rat Na, K-ATPase α1, α2, and α3 isoforms expressed in Hela cells. J. Biol. Chem. 266, 16925-16930. Kelly, S.P., Chow, I.N.K., Woo, N.Y.S., 1999. Haloplasticity of black seabream (Mylio macrocephalus); hypersaline to freshwater acclimation. J. Exp. Zool. 283, 226-241. Lee, T.H., Tsai, J.C., Fang, M.J., Yu, M.J., Hwang, P.P., 1998. Isoform expresseion of Na+-K+-ATPase α-subunit in gills of the teleost Oreochromis mossambicus. Am. J. Physiol. 275, R926-R932. Lee, T.H., Hwang, P.P., Shieh, Y.E., Lin, C.H., 2000. The relationship between ‘deep-hole' mitochondria-rich cells and salinity adaptation in the euryhaline teleost, Oreochromis mossambicus. Fish Physiol. Biochem. 23, 133-140. Lee, T.H., Feng, S.H., Lin, C.H., Hwang, Y.H., Huang, C.L., Hwang, P.P., 2003. Ambient salinity modulates the expression of sodium pumps in branchial mitochondria-rich cells of Mozambique tilapia, Oreochromis mossambicus. Zool. Sci. 20, 29-36. Lin, C.H., Lee, T.H., 2005. Sodium or potassium ions activate different kinetics of gill Na, K-ATPase in three seawater- and freshwater-acclimated euryhaline teleosts. J. Exp. Zool. A 303, 57-65. Lin, C.H., Tsai, R.S., Lee, T.H., 2004a. Expression and distribution of Na, K-ATPase in gill and kidney of the spotted green pufferfish, Tetraodon nigroviridis, in response to salinity challenge. Comp. Biochem. Physiol. A 138, 287-295. Lin, C.H., Huang, C.L., Yang, C.H., Lee, T.H., Hwang, P.P., 2004b. Time-course changes in the expression of Na, K-ATPase and the morphometry of mitochondrion-rich cells in gills of euryhaline tilapia (Oreochromis mossambicus) during freshwater acclimation. J. Exp. Zool. A 301, 85-96. Lin, L.Y., Horng, J.L., Kunkel, J.G., Hwang, P.P., 2006a. Proton pump-rich cell secretes acid in skin of zebrafish larvae. Am. J. Physiol. 290, C371-C378. Lin, Y.M., Chen, C.N., Lee, T.H., 2003. The expression of gill Na, K-ATPase in milkfish, Chanos chanos, acclimated to seawater, brackish water and fresh water. Comp. Biochem. Physiol. A 135, 489-497. Lin, Y.M., Chen, C.N., Yoshinaga, T., Tsai, S.C., Shen, I.D., Lee, T.H., 2006b. Short-term effects of hyposmotic shock on Na+/K+-ATPase expression in gills of the euryhaline milkfish, Chanos chanos. Comp. Biochem. Physiol. A 143, 406-415. Mancera, J.M., McCormick, S.D., 2000. Rapid activation of gill Na+, K+-ATPase in the euryhaline teleosts Fundulus heteroclitus. J. Exp. Zool. 287, 263-274. Marshall, W.S., 2002. Na+, Cl-, Ca2+ and Zn2+ transport by fish gills: retrospective review and prospective synthesis. J. Exp. Zool. 293, 264-283. McCormick, S.D., 1995. Hormonal control of gill Na+, K+-ATPase and chloride cell function. In: Wood, C.M., Shuttleworth, T.J. (eds.), Cellular and Molecular Approaches to Fish Ionic Regulation. Academic Press, New York. pp. 285-315. Mobasheri, A., Avila, J., Cozar-Castellano, I., Brownleader, M.D., Trevan, M., Francis, M.J., Lamb, J.F., Martin-Vasallo, P., 2000. Na+, K+-ATPase isozyme diversity; comparative biochemistry and physiological implications of novel functional interactions. Biosci. Rep. 20, 51-91. Morgan, J.D., Sakamoto, T., Grau, E.G., Iwama, G.K., 1997. Physiological and respiratory responses of the Mozambique Tilapia (Oreochromis mossambicus) to salinity acclimation. Comp. Biochem. Physiol. A 117, 391-398. Morrison, J.F., Guynn, S.R., Scofield, M.A., Dowd, F.J., Petzel, D.H., 2006. Warm acclimation changes the expression of the Na+/K+-ATPase α-subunit isoforms in Antarctic fish gills. J. Exp. Mar. Biol. Ecol. 333, 129-139. Nilsen, T.O., Ebbesson, L.O.E., Madsen, S.S., McCormick, S.D., Andersson, E., Björnsson, B.T., Prunet, P., Stefansson, S.O., 2007. Differential expression of gill Na+, K+-ATPase α- and β-subunits, Na+, K+, 2Cl- cotransporter and CFTR anion channel in juvenile anadromous and landlocked Atlantic salmon Salmo salar. J. Exp. Biol. 210, 2885-2896. Pagliarani, A., Ventrella, V., Ballestrazzi, R., Trombetti, F., Pirini, M., Trigari, G., 1991. Salinity-dependence of the properties of gill (Na++K+)-ATPase in rainbow trout (Oncorhynchus mykiss). Comp. Biochem. Physiol. B 100, 229-236. Perry, S.F., 1997. The chloride cells: structure and function in the gills of freshwater fishes. Annu. Rev. Physiol. 59, 325-347. Piermarini, P.M., Evans, D.H., 2001. Immunochemical analysis of the vacuolar proton-ATPase B-subunit in the gills of a euryhaline stingray (Dasyatis sabina): effects of salinity and relation to Na+/K+-ATPase. J. Exp. Biol. 204, 3251-3259. Pressley, T.A., 1992. Phylogenetic conservation of isoform-specific regions within α-subunit of Na,K-ATPase. Am. J. Physiol. 262, C743-C751. Reeves, A.S., Collins, J.H., Schwartz, A., 1980. Isolation and characterization of (Na,K)-ATPase proteolipid. Biochem. Biophys. Res. Commun. 95, 1591-1598. Richards, J.G., Semple, J.W., Bystriansky, J.S., Schulte, P.M., 2003. Na+/K+-ATPase α-isoform switching in gills of rainbow trout (Oncorhynchus mykiss) during salinity transfer. J. Exp. Biol. 206, 4475-4486. Scheiner-Bobis, G., 2002. The sodium pump- its molecular properties and mechanics of ion transport. Eur. J. Biochem. 269, 2424-2433. Schönrock, C., Morley, S.D., Okawara, Y., Lederis, K., Richter, D., 1991. Sodium and potassium ATPase of the teleost fish Catostomus commersoni. Sequence, protein structure and evolutionary conservation of the alpha-subunit. Biol. Chem. Hoppe-Seyler 372, 279-286. Scott, G.R.J., Richards, G., Forbush, B., Isenring, P.P., Schulte, M., 2004. Changes in gene expression in gills of the euryhaline killifish Fundulus heteroclitus after abrupt salinity transfer. Am. J. Physiol. 287, C300-C309. Seidelin, M., Madsen, S.S., Blenstrup, H., Tipsmark, C.K., 2000. Time-course changes in the expression of Na+, K+-ATPase in gills and pyloric caeca of brown trout (Salmo trutta) during acclimation to seawater. Physiol. Biol. Zool. 73, 446-453. Semple, J.W., Green, H.J., Schulte, P.M., 2002. Molecular cloning and characterization of two Na/K-ATPase isoforms in Fundulus heteroclitus. Mar. Biotechnol. 4, 512-519. Shamraj, O.I., Lingrel, J.B., 1994. A putative fourth Na+, K+-ATPase alpha-subunit gene is expressed in testis. Proc. Natl. Acad. Sci. U.S.A. 91, 12952-12956. Shrimpton, J.M., Patterson, D.A., Richards, J.G., Cooke, S.J., Schulte, P.M., Hinch, S.G., Farrell, A.P., 2005. Ionoregulatory changes in different populations of maturing sockeye salmon Oncorhynchus nerka during ocean and river migration. J. Exp. Biol. 208, 4069-4078. Shull, M.M., Greeb, J., Lingrel, J.B., 1986. Molecular cloning of three distinct forms of the Na/K-ATPase alpha-subunit from rat brain. Biochemistry 25, 8125-8132. Singer, T.D., Clements, K.M., Semple, J.W., Schutt, P.M., Bystriansky, J.S., Finstad, B., Fleming, I.A., Mckinley, R.S., 2002. Seawater tolerance and gene expression in two strains of Atlantic salmon smolts. Can. J. Fish Aquat. Sci. 59, 125-135. Stagg, R.M., Shuttleworth, T.J., 1982. The effects of copper on ionic regulation by the gills of the seawater-adapted flounder (Platichthys flesus L.). J. Comp. Physiol. 149, 83-90. Swanson, C., 1998. Interactive effects of salinity on metabolic rate, activity, growth and osmoregulation in the euryhaline milkfish (Chanos chanos). J. Biol. Chem. 201, 3355-3366. Takeyasu, K., Lemas, V., Fambrough, D.M., 1990. Stability of Na+-K+-ATPase α-subunit isoforms in evolution. Am. J. Physiol. 259, C619-C630. Therien, A.G., Karlish, S.J., Blostein, R., 1999. Expression and functional role of the gamma subunit of the Na, K-ATPase in mammalian cells. J. Biol. Chem. 274, 12252-12256. Tipsmark, C.K., Madsen, S.S., Seidelin, M., Christensen, A.S., Cutler, C.P., Cramb, G., 2002. Dynamics of Na, K, 2Cl co-transporter and Na, K-ATPase expression in the branchial epithelium of brown trout (Salmon trutta) and Atlantic salmon (Salmon salar). J. Exp. Zool. 293, 106-118. Tipsmark, C.K., Madsen, S.S., Borski, R.J., 2004. Effect of salinity on expression of branchial ion transporters in striped bass (Morone saxatilis). J. Exp. Zool. A 301, 979-991. Towle, D.W., Gilman, M.E., Hempel, J.D., 1977. Rapid modulation of gill Na+-K+-dependent ATPase activity during acclimation of the killifish Fundulus heteroclitus to salinity change. J. Exp. Zool. 202, 179-186. Uchida, K., Kaneko, T., Miyazaki, H., Hasegawa, S., Hirano, T., 2000. Excellent salinity tolerance of Mozambique tilapia (Oreochromis mossambicus): elevated chloride cell activity in the branchial and percular epithelia of the fish adapted to concentrated seawater. Zool. Sci. 17, 149-160. Woo, A.L., James, P.F., Lingrel, J.B., 2000. Sperm motility is dependent on a unique isoform of the Na, K-ATPase. J. Biol. Chem. 275, 20693-20699. Yu, C.L., Xie, Z.J., Askari, A., Modyanov, N.N., 1997. Enzymatic properties of human Na, K-ATPase α1β3 isozyme. Arch. Biochem. Biophys. 345, 143-149.
虱目魚(Chanos chanos)是一種廣鹽性硬骨魚類,無論在高張的海水環境或低張的淡水環境下皆可生存。先前的研究中指出,當虱目魚適應於不同的鹽度環境時,其鰓上Na+/K+-ATPase (NKA)活性有不同的變化,且其NKA對於鈉離子與鉀離子的親和力也不同。由此提出假說:NKA活性的變化及其對離子親和力的不同是來自於不同NKA α-subunit isoforms的表現。因此為進一步了解不同的NKA酵素特性是否與其α-subunit isoforms (α1,α2及α3)表現有關,本實驗將虱目魚馴養於高鹽海水(60‰)、海水(35‰)和淡水三種鹽度環境中,利用免疫轉漬法(immunoblot)從蛋白質含量來探討長期適應於上述三種環境,以及轉移鹽度環境(包括由海水轉移至淡水或高鹽海水)的短時間內,其鰓上NKA α-subunit isoforms表現情形。由實驗結果發現,長期馴養於海水的虱目魚,其鰓上NKA α1-isoform及NKA α3-isoform蛋白質含量顯著高於淡水及高鹽海水馴養之虱目魚。而在鹽度轉移的實驗部分,由海水轉移至高鹽海水時,NKA α1-isoform蛋白質含量在轉移48小時之前緩慢下降;當轉移96及168小時之後,則顯著降低,達未轉移前的四倍;NKA α2-isoform蛋白質含量在轉移期間,均無顯著變化,而NKA α3-isoform蛋白質含量,在轉移12小時後,即有顯著性的下降。另一方面,由海水轉移至淡水時,NKA α1-isoform蛋白質含量在起初的12小時有下降趨勢,之後隨即上升,至48小時有一高峰,當轉移96及168小時之後,再顯著性地下降,達未轉移前的三倍;NKA α2-isoform蛋白質含量則在轉移24小時後顯著性上升,之後下降回未轉移前相當;而NKA α3-isoform蛋白質含量,在轉移96及168小時後,即有顯著性的下降。綜合上述結果顯示,虱目魚鰓上NKA α1-isoform與NKA α3-isoform蛋白質含量上升,有助於適應在其原棲地-海水中,且當虱目魚長期適應或轉移至不同鹽度環境時,鰓上NKA α1-isoform與NKA α3-isoform的變化,有可能是導致此蛋白有不同的酵素特性的因素。

Milkfish (Chanos chanos) is an euryhaline teleost which is able to survive in environments with a broad range of salinities. Since previous studies revealed that upon salinity challenge milkfish exhibited adaptive changes in branchial NKA activity with different Na+ and K+ affinity, it was hypothesized that alteration in activity and ion-affinity was derived from changes of different isoforms of NKA α-subunit (i.e., the catalytic subunit). It is thus intriguing to compare the expression patterns of three major isoforms of NKA α-subunit (i.e., α1, α2, and α3) in gills of milkfish following salinity changes to realize their roles. In this study, milkfish were reared in seawater (SW, 35‰), fresh water (FW), or hypersaline water (HSW, 60‰) and the protein abundances of three NKA α-isoforms were analysed by immunoblotting. In acclimation experiments the milkfish were raised in SW, FW, or HSW for more than two weeks. The SW group exhibited significantly higher levels of NKA α1- and α3-subunit than the FW or HSW group. In addition, the time-course experiments for which milkfish were transferred from SW to FW or HSW and then sampled at 12, 24, 48, 96, and 168 h showed that after transfer from SW to HSW, NKA α1-isoform levels in gills declined gradually before 48 h and achieved a significant 4-folds decrease at 96 and 168 h, while NKA α3-isoform decreased significantly since 12 h post-transfer and no significant difference was found in NKA α2-isoform abundance. When fish were transferred from SW to FW, NKA α1-, α2-, α3-isoform levels decreased at 12 h post-transfer; α1-isoform increased gradually and peaked at 48 h while α2-isoform increased significantly at 24 h post-transfer. Then NKA α1- and α3-isoform levels achieved a significant decrease at 96 and 168 h following salinity transfer. Taken together, upregulation of gill NKA α1- and α3-isoforms was essential for the euryhaline milkfish to inhabit in SW, their primary natural habitat, and the changes of gill NKA α1- and α3-isoforms may lead to different Na+ or K+ affinities and fulfill some of the requirements for the subtly altered enzyme behaviors in gills of the marine euryhaline milkfish upon salinity challenge.
其他識別: U0005-2512200716573900
Appears in Collections:生命科學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.