Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributorWen-Hao Chouen_US
dc.contributorHao-Wei Kaoen_US
dc.contributorHsi-Te Shihen_US
dc.contributor.advisorTsung-Han Leeen_US
dc.contributor.authorNian-Hong, Jang-Liawen_US
dc.identifier.citationAlexandrino J, Arntzen JW, Ferrand N (2002) Nested clade analysis and the genetic evidence for population expansion in the phylogeography of the golden-striped salamander, Chioglossa lusitanica (Amphibia: Urodela). Heredity 88: 66-74. Avise JC, Arnold J, Ball RM, Bermingham E, Lamb T, Neigel JE, Reeb CA, Saunders NC (1987) Intraspecific Phylogeography: the Mitochondrial DNA Bridge between Population. Genetics and Systematics. Annu Rev Ecol Syst 18: 489-522. Balinsky JB (1981) Adaptation of nitrogen metabolism to hyperosmotic environment in Amphibia. J Exp Biol 215: 335 – 350. Bossuyt F, Milinkovitch MC (2000) Convergent adaptive radiations in Madagascan and Asian ranid frogs reveal covariation between larval and adult traits. Proc Natl Acad Sci USA 97: 6585-6590. Boulenger GA (1908) Descriptions of a new frog and a new snake from Formosa. Ann Mag Nat Hist 8: 221-222. Boulenger GA (1909) Descriptions of four new frogs and a new snake discovered by Mr. H. Sauter in Formosa. Ann Mag Nat Hist (8) Ⅳ: 492-496. Boulenger GA (1920) A monograph of the South Asia, Papuan, Melanesian and Australian frog of the genus Rana. Rec Indian Mus 20: 1-226. Brown RF, Guttman SI (2002) Phylogenetic systematics of the Rana signata complex of Philippine and Bornean stream frogs: reconsideration of Huxley''s modification of Wallace''s line at the Oriental-Australian faunal zone interface. Biol J Linn Soc 76: 393-461. Brown WM, George MJ, Wilson AC (1979) Rapid evolution of animal mitochondrial DNA. Proc Natl Acad Sci USA 76: 1967-1971. Chang CH, Shao YT, Kao HW (2006) Molecular identification of two sibling species of Puntius in Taiwan. Zool Stud 45: 149-156. Chen IS, Chang YC (2007) Taxonomic revision and mitochondrial sequence evolution of the cyprinid genus Squalidus (Teleostei: Cyprinidae) in Taiwan with description of a new species. Raffl Bull Zool S14: 69-76. Chen M, Lathrop, Ngo, Orlov, Ho, and Somorjai (2005) Taxonomic chaos in Asian ranid frogs: an initial phylogenetic resolution. Herpetol J 15: 231-243. Cheng H-L, Huang S, Lee S-C (2005a) Phylogeography of the Endemic Goby, Rhinogobius maculafasciatus (Pisces: Gobiidae), in Taiwan. Zool Stud 44: 329-336. Cheng YP, Hwang SY, Lin TP (2005b) Potential refugia in Taiwan revealed by the phylogeographical study of Castanopsis carlesii Hayata (Fagaceae). Mol Ecol 14: 2075-2085. Chou WH, Lin JY (1997a) Tadpoles of Taiwan. Spec Publ Nat Mus Nat Sci No. 7: 1-98. Chou WH, Lin JY (1997b) Geographical Variations of Rana sauteri (Anura: Ranidae) in Taiwan. Zool Stud 36: 201-221. Chou WH, Lin JY (1997c) Description of a New Species, Rana multidenticulata (Anura: Ranidae), from Taiwan. Zool Stud 36: 222-229. Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9: 1657-1660. Cox CB, Moore PD (2000) Biogeography: an ecological and evolutionary approach. 6 ed. London: Blackwell Science. Creer S, Malhotra A, Thorpe RS, Chou WH (2001) Multiple causation of phylogeographical pattern as revealed by nested clade analysis of the bamboo viper (Trimeresurus stejnegeri) within Taiwan. Mol Ecol 10: 1967-1981. Creer S, Thorpe RS, Malhotra A, Chou WH, Stenson AG (2004) The utility of AFLPs for supporting mitochondrial DNA phylogeographical analyses in the Taiwanese bamboo viper, Trimeresurus stejnegeri. Journal of Evolutionary Biology 17: 100-107. Dicker SE, Elliott AB (1970) Effect of neurohypophysial hormones on fluid movement across isolated bladder of Rana cancrivora, Rana temporaria and Bufo melanostictus. J Physiol 210: 137-149. Dubois A (1987) Living amphibians of the world: a first step towards a comprehensive checklist. Alytes 5: 99-149. Dubois A (1992) Notes sur la classification des Ranidae (Amphibiens Anoures). Bull Mens Soc Linn Lyon 61: 305-352. Duellman WE, Trueb L (1986) Biology of amphibians. New York: McGraw-Hill. Emery KO, Nino H, Sullivan B (1971) Post-Pleistocene levels of the East China Sea. Woods Hole, MA: Woods Hole Oceanographic Institute Press. Excoffier L, Smouse PE (1994) Using allele frequencies and geographic subdivision to reconstruct gene trees within a species: molecular variance parsimony. Genetics 136: 343-359. Fay JC, Wu CI (2001) The neutral theory in the genomic era. Curr Opin Genet Dev 11: 642-646. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783-791. Ford MJ (2002) Applications of selective neutrality tests to molecular ecology. Mol Ecol 11: 1245-1262. Frost DR (2007) Amphibian Species of the World: an online reference. Version 5.0. New York, USA: American Museum of Natural History. Frost DR, Grant T, Faivovich Jn, Bain RH, Haas A, Haddad ClFB, Sa´ ROD, Channing A, Wilkinson M, Donnellan SC, Raxworthy CJ, Campbell JA, Blotto BL, Moler P, Drewes RC, Nussbaum RA, Lynch JD, Green DM, Wheeler WC (2006) The amphibian tree of life. Bull Am Mus Nat Hist 297: 1-370. Fu YX, Li WH (1993) Statistical tests of neutrality of mutations. Genetics 133: 693-709. Funk WC, Blouin MS, Corn PS, Maxell BA, Pilliod DS, Amish S, Allendorf FW (2005) Population structure of Columbia spotted frogs (Rana luteiventris) is strongly affected by the landscape. Mol Ecol 2005: 483-496. Gibbard P, van Kolfschoten T (2004) The Pleistocene and Holocene Epochs. In: Gradstein FM, Ogg JG, Smith AG, editors. A Geologic Time Scale 2004. Cambridge: Cambridge University Press. Gordon MS, Tucker VA (1965) Osmotic regulation in the tadpoles of the crab-eating frog (Rana cancrivora). J Exp Biol 42: 437-445. Gray WM (1989) Origin and evolution of mitochondrial DNA. Ann Rev of Cell Biol 5: 25-50. Gressitt JL (1938) Some amphibians from Formosa and the Ryu Kyu Islands, with description of a new species. Proc Biol Soc Wash 51: 159-164. Horikawa Y (1931) A list of frogs from Formosa. Ibid 21: 139-145. Hsu FH, Lin FJ, Lin YS (2000) Phylogeographic Variation in Mitochondrial DNA of Formosan White-bellied Rat Niviventer culturatus. Zool Stud 39: 38-46. Huang CY, Wu WY, Chang CP, Tsao S, Yuan PB, Lin CW, Yuan XK (1997) Tectonic evolution of accretionary prism in the arc-continent collision terrain of Taiwan. Tectonophysics 281: 31-51. Huang WS, Cheng YS, Tu HY (2004) Reproductive patterns of two sympatric ranid frogs, Rana latouchii and R. sauteri, with comments on anuran breeding seasons in Taiwan. Coll Res 17: 1-10. Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23: 254-267. Inger RF, Orlov N, Darevsky I (1999) Frogs of Vietnam: A report on new collections. Fieldiana (Zoology) 92: 1-46. Inger RF, Voris HK (2001) The biogeographical relations of the frogs and snakes of Sundaland. J Biogeogr 28: 863-891. Iskandar DT (1998) The amphibians of Java and Bali. LIPI - Indonesia: Research and Development centre for Biology. IUCN, CI, NatureServe (2006) Global Amphibian Assessment. Jang-Liaw NH, Tang KL, Hui CF, Shao KT (2002) Molecular phylogeny of 48 species of damselfishes (Perciformes: Pomacentridae) using 12S mtDNA sequences. Mol Phylogenet Evol 25: 445-454. Johns GC, Avise JC (1998) A comparative summary of genetic distances in the vertebrates from the mitochondrial cytochrome b gene. Mol Biol Evol 15: 1481-1490. Kimura M (1968) Evolutionary rate at the molecular level. Nature 217: 624-626. Kimura M (1983) The neutral theory of molecular evolution. Cambridge: Cambridge University Press. Kimura M (1986) DNA and the neutral theory. Phil Trans Ser B, Biological Sciences 312: 343-354. King JL, Jukes TH (1969) Non-Darwinian evolution. Science 164: 788-798. Kocher TD, Thomas WK, Meyer A, Edwards SV, Paabo S, Villablanca FX, Wilson AC (1989) Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc Natl Acad Sci USA 86: 6196-6200. Kumar S, Tamura K, Nei M (2004) MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5: 150-163. Kuramoto M (1978) Thermal tolerance of frog embyros as a function of developmental stage. Herptologica 34: 417-422 Kuramoto M, Wang CS, Yu HT (1984) Breeding, larval morphology, and experimental hybridization of Taiwanese brown frogs, Rana longicrus and R. sauteri. Journal of Herpetology 18: 387-395. Lai SJ, Kam YC, Lin YS (2003) Elevational variation in reproductive and life history traits of sauter''s frog Rana sauteri Boulenger, 1909 in Taiwan. Zool Stud 42: 193-202. Lee PF (2004) Natural resource and ecological database of Taiwan (1): biodiversity. Taipei: Council of Agriculture (in Chinese). Lee PF, Sheu JE, Chen CC (1994) Mapping vertebrate biodiversity in Taiwan. Taipei: Insititute of Botany. pp499-508. Lee WJ, Conroy J, Howell WH, Kocher TD (1995) Structure and evolution of teleost mitochondrial control region. Evolution 41: 54-66. Li HL, Keng H (1950) Phytogeography affinities of southern Taiwan. Taiwania 1: 103-128. Lin CC (1966) An outline of Taiwan''s Quaternary geohistory with a special discussion of the relation between natural history andcultural history in Taiwan. Bull Depart Archaeo Anthro 23: 7-44 (in Chinese). Lin CF, Lue KY (2004) Altitudinal differences in temporal distribution, spatial preference and timing breeding climax of frogs and toads in the central Taiwan. Endem Species Res 6: 39-50. Lin SM, Chen CA, Lue KY (2002) Molecular phylogeny and biogeography of the grass lizards genus Takydromus (Reptilia: Lacertidae) of east Asia. Molecular Phylogenetics and Evolution 22: 276-288. Ma GC, Tsao HS, Lu HP, Yu HT (2006a) AFLPs congruent with morphological differentiation of Asian commom minnow Zacco (Pisces: Cyprinidae) in Taiwan. Zool Scr 35: 341-351. Ma GC, Watanabe K, Tsao HS, Yu HT (2006b) Mitochondrial phylogeny reveals the artificial introduction of the pale chub Zacco platypus (Cyprinidae) in Taiwan. Ichthyol Res 53: 323-329. Macey JR, Schultell JA, Larson A, Fang Z, Wang Y, Tuniyev BS, Papenfuss TJ (1998) Phylogenetic relationships of toads in the Bufo bufo species group from the Eastern Escarpment of the Tibetan Plateau: a case of vicariance and dispersal. Mol Phylogenet Evol 9: 80-87. Maki M (1922) Notes on the salamanders found in the island of Formosa. Zool Mag 34: 635-639 (in Japanese). Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18: 189-197. Meirte D (1999) Batraciens. In La faune terrestre de Mayotte. Louette M, editor. Tervuren, Belgium: Royal Museum for Central Africa. Ohler A, Swan SR, Daltry JC (2002) A recent survey of the amphibian fauna of the Cardamom mountains, southwest Cambodia with descriptions of three new species. Raffles Bull Zool 50: 465-481. Okada Y (1934) The anura fauna of Formosa. Copeia 1: 19-20. Orlov NL, Murphy RW, Ananjeva NB, Ryabov SA, Cuc HT (2002) Herpetofauna of Vietnam, a checklist. Part 1. Amphibia. Russian Journal of Herpetology 9: 81-104. Oshida T, Lee JK, Lin LK, Chen YJ (2006) Phylogeography of Pallas''s squirrel in Taiwan: geographical isolation in an arboreal small mammal. J Mammal 87: 247-254. Oshima M (1923) Studies on the distribution of the freshwater fishes of Taiwan and the geographical relationship of the Taiwan and the adjencent area. Zool Mag 35: 1-49 (in Japanese). Ota H (1997) Historical biogeographical implications in the variation and diversity of amphibians and reptiles in Taiwan. In: Lue KY, Chen TH (editors) Taipei. National Science Council, ROC. Otsuka H (1984) Straitigraphic position of the Chochen vertebrate fauna of the Toukoushan Group in the environs of the Chochen Distric, SW Taiwan, with special reference to its geologic age. J Taiwan Mus 37: 37-55. Otsuka H, Shikama T (1978) Fossil Cervidae from Tou-Kou-shan Group in Taiwan. Rep Fac Sci Kagoshima Univ (Earth Sci Biol) 11: 27-59. Otsuka H, Takahashi A (2000) Pleistocene vertebrate faunas in the Ryukyu Islands: their migration and extinction. Tropics 10: 25-40. Pelletier B, Stephan JF (1986) Middle Miocene obduction and late Miocene beginning of collision registered in the Hengchun Peninsula: A geodynamic implications for the evolution of Taiwan. Tectonophysics 125: 133-160. Posada D, Crandall KA (1998) Modeltest: Testing the Model of DNA Substitution. Bioinformatics 14: 817-818. Qi GQ, Ho CK, Chang CH (1999) The Pleistocene fossil stuids from Chochen, Tainan, southwestern Taiwan. Bulletin of the National Museum of Natural Science 12: 33-40. Rozas J, DelBarrio JCS, Messeguer X, Rozas R (2003) DnaSP, DNA ploymorphism analyses by the coalescent and other methods. Bioinformatics 19: 2496-2497. Saiki RK (1990) Amplification of genomic DNA. In: Innis MA, G. DH, Sninsky JJ, White TJ (editors) PCR Protocols: a Guide to Methods and Applications. New York: Academic Press. p 13-20. Shao KT (2006) Taiwan biodiversity national information network. WWW Web electronic publication. version 2006/1 ed. Shih HT, Hung HC, Schubart CD, Chen CA, Chang HW (2006) Intraspecific genetic diversity of the endemic freshwater crab Candidiopotamon rathbunae (Decapoda, Brachyura, Potamidae) reflects five million years of the geological history of Taiwan. J Biogeogr 33: 980-989. Shikama T, Otsuka H, Tomida Y (1975) Fossil Probosoidae from Taiwan. Sci Rep Yokohama Natl Univ Ser. 2: 13-62. Smith MA (1921) New or little-known reptiles and batrachians from South Annam (Indo-China). Proc Zool Soc London 1921: 423-440. Stejneger L (1898) On a collection of batrachians and reptiles from Formosa and adjacent islands. Proc Biol Soc Wash 14: 189-191. Stejneger L (1910) The batrachians and reptiles of Formosa. Proc U S Nat Mus XXXⅧ: 91-114. Sumida M, Kanamori Y, Kaneda H, Kato Y, Nishioka M, Hasegawa M, Yonekawa H (2001) Complete nucleotide sequence and gene rearrangement of the mitochondrial genome of the Japanese pond frog Rana nigromaculata. Genes Genet Syst 76: 311-325. Swinhoe R (1870) Note on reptiles and batrachians collected in various parts of China. Proc Zool Soc London: 409-412. Swofford DL (2001) PAUP. Phylogenetic analysis using parsimony (and other methods). Version 4.0 beta. Sunderland, Massachusetts: Sinauer Associates. Tajima F (1989) Statistical method for testing the neutral mutation hypothesisby DNA polymorphism. Genetics 123: 585-595. Takezaki N, Rzhetsky A, Nei M (1995) Phylogenetic test of the molecular clock and linearized trees. Mol Biol Evol 12: 823-833. Tanaka-Ueno T, Matsui M, Chen SL, Tanaka O, Ota H (1998) Phylogenetic relationships of brown frogs from Taiwan and Japan assessed by mitochondrial cytochrome b Gene sequences (Rana:Ranidae). Zool Sci: 283-288. Tominaga A, Matsui M, Nishikawa K, Tanabe S (2006) Phylogenetic relationships of Hynobius naevius (Amphibia: Caudata) as revealed by mitochondrial 12S and 16S rRNA genes. Mol Phylogenet Evol 38: 677-684. Tzeng CS (1986) Distribution of the freshwater fishes of Taiwan. J Taiwan Mus 39: 127-146. Veith M, Fromhage L, Kosuch J, Vences M (2006) Historical biogeography of Western Palaearctic pelobatid and pelodytid frogs: a molecular phylogenetic perspective. Contrib Zool 75: 109-120. Wang CK (1962) Some environmental conditions and responses of vegetation on Taiwan. Biol Bull Tunghai Univ 11: 1-19. Wang HY, Tsai MP, Yu MJ, Lee SC (1999) Influence of glaciation on divergence patterns of the endemic minnow, Zacco pachycephalus, in Taiwan. Mol Ecol 8: 1879-1888. Wang JP, Hsu KC, Chiang TY (2000) Mitochondrial DNA phylogeography of Acrossocheilus paradoxus (Cyprinidae) in Taiwan. Mol Ecol 9: 1483-1494. Wang JP, Lin HD, Huang S, Pan CH, Chen XL, Chiang TY (2004) Phylogeography of Varicorhinus barbatulus (Cyprinidae) in Taiwan based on nucleotide variation of mtDNA and allozymes. Mol Phylogenet Evol 31: 1143-1156. Watanabe K, Jang-Liaw NH, Zhang CG, Jeon SR, Nishida M (2007) Camparative phylogeography of the bagrid catfishes in Taiwan. Ichthyol Res 54 (in press). Weisrock DW, Macey JR, Ugurtas IH, Larson A, Papenfuss TJ (2001) Molecular phylogenetics and historical biogeography among salamandrids of the “true” salamander clade: rapid branching of numerous highly divergent lineages in Mertensiella luschani associated with the rise of Anatolia. Mol Phylogenet Evol 18: 434-448. Wu JH, Hsu CH, Fang LS, Chen IS (2007) The molecular phylogeography of Candidia barbata species complex (Teleostei: Cyprinidae) from Taiwan. Raffl Bull Zool S14: 61-67. Yang YJ, Lin YS, Wu JL, Hu CF (1994) Variation in mitochondrial DNA and population structure of the Taipei treefrog Rhacophorus taipeianus in Taiwan. Mol Ecol 3: 219-228. Yeh WB, Chang YL, Lin CH, Wu FS, Yang JT (2004) Genetic differentiation of Loxoblemmus appendicularis complex (Orthoptera: Gryllidae): speciation through vicariant and glaciation events. Ann Entomol Soc Am 97: 613-623. Yu HS, Lu JC (1995) Development of the shale diaper-controlled Fangliao Canyon on the continental slope off southwestern Taiwan. J Southeast Asian Earth Sci 11: 265-276. Yu HT (1995) Patterns of diversification and genetic population structure of small mammals in Taiwan. Biol J Linn Soc 55: 69-89. Yu HT, Fang YP, Chou CW, Huang SW, Yew FH (1996) Chromosomal evolution in three species of murid rodents of Taiwan. Zool Stud 35: 195-199. Yu HT, Peng YH (2002) Population differentiation and gene flow revealed by microsatellite DNA markers in the house mouse (Mus musculus castaneus) in Taiwan. Zool Sci 19: 475-483. Yuan SL, Lin LK, Oshida T (2006) Phylogeography of the mole-shrew (Anourosorex yamashinai) in Taiwan: implications of interglacial refugia in a high-elevation small mammal. Mol Ecol 15: 2119-2130. Zhao EM, Adler K (1993) Herpetology of China. Ohio: Society for the study of amphibians and reptiles, Oxford. 王智文 (2005) 台灣及大陸東南地區中華花鰍 (Cobitis sinensis)種群型態系統分類、分子地理親緣與生態生殖之研究碩士論文。國立中山大學。高雄。 田婉淑,江耀明 (1986) 中國兩棲爬行鑑定手冊。科學出版社。北京。 朱育民 (2001) 台灣產瓢鰭鰕虎屬之形態分類與mtDNA分子演化及日本瓢鰭鰕虎生殖生態之研究碩士論文。國立中山大學。高雄。 呂光洋,杜銘章,向高世 (1999) 台灣兩棲爬行動物圖鑑。中華民國自然生態保育協會。台北。 呂光洋,林政彥,莊國碩 (1990) 台灣區野生動物資料庫(一)兩棲類(Ⅱ)。行政院農業委員會。台北。 李柏鋒 (2003) 台灣海域角鯊目系統分類及分子類緣關係之研究碩士論文。國立台灣大學。台北。 李培芬,潘彥宏,呂光洋,周文豪,張琪如 (2000) 臺灣兩生類動物的分佈模式與多樣性。海峽兩岸生物多樣性保育研討會論文集。周延鑫,謝豐國,吳聲華,周文豪編。國立自然科學博物館,台中。159-177頁 。 周文豪, 林俊義 (2000) 臺灣蝌蚪的微棲境分化--兼論生態表型多樣性及保育的省思。海峽兩岸生物多樣性保育研討會論文集。周延鑫,謝豐國,吳聲華,周文豪編。國立自然科學博物館。台中。139-158頁。 林朝棨 (1957) 臺灣地形。臺灣省文獻委員會。台北。 柳榗 (1989) 台灣生物地理概說。台灣動物地理淵源研討會專集。台北市立動物園保育組。台北。15-25頁。 洪東奇,賴淑雅,黃獻文,梁佑全,歐柏榮 (2001) 台灣長鬃山羊個體間粒線體DNA之12S rRNA及cytochrome b 序列分析比較。特有生物研究 3: 37-48。 洪東耀 (2004) 以粒線體DNA探討台灣產鱨類生物地理學碩士論文。國立清華大學。新竹。 張訓誠 (2002) 以粒線體核酸序列與頭骨形態分析長鬃山羊屬(偶蹄目:牛科)之親緣關係與生物地理碩士論文。國立中山大學。高雄。 張榮祖 (1999) 中國動物地理。科學出版社。北京。 陳兼善 (1956) 台灣脊椎動物誌。台灣商務印書館。台北。 陳惠琦 (1993) 梭德氏蛙 (Rana sauteri)的粒線體DNA序列與族群變異之初探碩士論文。國立台灣大學。台北。 陳義雄,方力行 (1999) 台灣淡水及河口魚類誌。國立海洋生物博物館。屏東。 費梁 (1999) 中國兩棲類圖鑑。河南科技出版社。鄭州。 費梁,葉昌媛 (2000) 湍蛙亞科一新屬--擬湍蛙屬,兼論與近緣屬的關係(兩棲綱:蛙科). 動物學報 46: 19-26。 費梁,葉昌媛,黃永昭 (1990) 中國兩棲動物檢索。科學技術文獻出版社重慶分社。重慶。 費梁,葉昌媛,黃永昭 (2005) 中國兩棲動物檢索及圖解。四川科學技術出版社。成都。 葉文珊 (1997) 莫氏樹蛙族群地理親緣關係之研究碩士論文。國立台灣大學。台北。 趙昭炳 (1982) 台灣海峽演變的初步研究。台灣海峽 1: 20-24。 劉承釗,胡淑琴 (1961) 中國無尾兩棲類。科學出版社。北京。 賴俊祥,呂光洋 (2006) 台灣山椒魚的基因變異及種化。基因生萬物:台灣野生生物基因多樣性保育專文彙編。黃生編。行政院農業委員會林務局。台北。31-40頁。zh_TW
dc.description.abstract本研究選取兩種台灣赤蛙科兩生類--拉都希氏赤蛙以及梭德氏赤蛙--作為實驗對象,利用粒線體去氧核糖核酸序列定序技術分別定序出198拉都希氏赤蛙以及244隻梭德氏赤蛙個體的cytochrome b序列片段,由其系統發育結構、網狀親緣結構以及分子時鐘排序等資訊來探討其族群間基因層級的差異,藉以瞭解不同族群間的親緣關係,以及推論可能的物種擴散歷程,進而建立並比較兩個物種的地理分佈模式。 本研究從台灣的拉都希氏赤蛙樣本中找出39個基因單型,在系統發育結構上主要可分成北部系群、西部系群以及東部-恆春系群,其中東部-恆春系群又可分為東部亞群及恆春半島亞群,西部系群有被濁水溪隔離成中西部及西南部系群的趨勢。系群間的地理界線相當清楚,彼此間族群或個體幾乎沒有重疊。梭德氏赤蛙的族群地理分佈則略為複雜,本研究共找出其77個基因單型,可分為兩個主要系群:第一系群有分佈在中央山脈以東的東部亞群、台灣中北部的北部亞群、台灣西南部,但以較高海拔山區為主的南山亞群以及較低海拔地區的南丘亞群;第二系群則僅分佈在三義以北地區,分佈區域和北山亞群重疊。兩個物種遷入台灣的途徑及歷程都可套用二次入侵模式,其中拉都希氏赤蛙在第一次遷入台灣時,並未成功的在北部建立族群;梭德氏赤蛙則在台灣北部共域存在著兩個系群,分別來自兩個不同的族群遷入事件。此外,梭德氏赤蛙在台灣的西南部出現了一個適應低海拔環境的系群,可能藉由生殖隔離的方式與鄰近高海拔地區的族群產生基因結構上的差異。 台灣島內兩種赤蛙的族群擴散模式不盡相同,主要系群的分化時間並不一樣。但兩者的擴散模式中仍有幾項相同點:1) 祖先族群進入台灣的路徑可能是經由今日苗栗丘陵地區的中港溪及頭前溪水系;2) 北部系群的遷入台灣的時間較晚,在遷入前即與大陸族群產生分化,遷入後族群分佈侷限於北台灣地區;3) 島內最早開始分化的族群為東部系群,反映了中央山脈對台灣動物地理形成的重要性。此外,兩個物種不同系群間的地理分佈亦頗為類似,基本上都是以山脈等地理特徵作為系群間的地理區隔。但是高山的阻隔對於梭德氏赤蛙的族群交流影響比較小,反倒是不同海拔的氣候類型可能造成高海拔及低海拔間梭德氏赤蛙族群的生殖隔離,進而產生遺傳上的差異。 由拉都希氏赤蛙與梭德氏赤蛙兩種兩棲類的族群遺傳結構,所歸納出來的台灣動物地理區劃與包括淡水魚在內的其他小型陸生脊椎動物有著高度的相似性。透過物種間的比較可歸納出台灣動物地理區的範圍及特性,進而對於台灣島的動物相演進史有著更進一步的認識。zh_TW
dc.description.abstractTo comprehend the geographical patterns of genetic variation in anurans in Taiwan, the genetic structures of Sylvirana latouchii from 203 individuals, and Rana latouchii from 244 individuals were tested using mitochondrial DNA (mtDNA) cytochrome b sequences. Phylogenetic structures, nested clade analyses, and molecular clock tests were applied to compare the phylogeography of these two species. In S. latouchii's study, a neighbor-joining tree of 39 haplotypes revealed three major divergences among Taiwanese individuals: the northern, western, and eastern-and-peninsula clades. Each clade was restricted to single geographical district and showed obvious differentiation. In R. sauteri's result, 77 haplotypes from 5 distant lineages, including northern lineage (NL), eastern lineage (EL), southern hill lineage (SHL), northern mountain lineage (NML), had been identified from phylogenetic analyses. The lineages of these two frogs show congruence on both biogeographic history and phylogenetic structures as follows: (1) The routes into Taiwan in the first beginning of migration events were located near Miaoli Plateau. (2) Both northern lineages migrated into Taiwan most recently, and limited in northern part of this island. (3) The first divergence events within this island were occurred by the formation of Central Mountain Rang. Phylogenetic results of both species exposed the possibility of multiple invasions hypothesis to the formation of Taiwanese fauna. Another contribution of this study is to summarize the biogeography of terrestrial vertebrates into five districts as follows: Northern District, Eastern District, Northern part of Western District, Southern part of Western District, and Hengchun Peninsula District. This biogeographic pattern is corresponsive to the landscape characters of Taiwan. There are some disagreements on the comparative phylogeny between these two species. The first colonization of S. latouchii failed to establish stable populations in northern Taiwan, but two lineages from different invasion events of R. sauteri occupied northern Taiwan sympatrically. Furthermore, a divergent lineage of R. sauteri in western-southern Taiwan had been identified and which was potentially occurred by reproduction isolation. The patterns of geographical divergence in these species reflect common historical events experienced by other native animals distributed in Taiwan such as freshwater fishes. The orders of divergence times between lineages were inferred using a molecular clock tests. Hypotheses of within-island differentiation models and multiple incursion models are proposed to depict the possible colonization history of S. latouchii and R. sauteri in Taiwan. The population relationships of S. latouchii between Taiwan and mainland China were also discussed.en_US
dc.description.tableofcontents中文摘要 i 英文摘要 iii 目次 v 表目次 viii 圖目次 ix 第一章 前言 1 第二章 台灣兩棲類的多樣性及地理分佈 11 一、台灣兩棲類分類系統 11 二、台灣兩棲類的地理分佈特性 15 三、台灣兩棲類的起源及遷移假說 16 第三章 台灣拉都希氏赤蛙的親緣地理學研究 20 一、材料與方法 20 (一)物種簡介 20 (二)標本描述 21 (三)DNA序列定序 23 (四)分子親緣分析 26 (五)網狀親緣結構分析 28 (六)分化年代估算 29 二、結果 31 (一)分子親緣分析 31 (二)中性檢驗 33 (三)網狀親緣結構分析結果及其親緣地理訊息 34 (四)拉都希氏赤蛙分化時間的估算結果 36 三、討論 37 (一)拉都希氏赤蛙的族群演化、結構以及隔離機制 37 (二)台灣拉都希氏赤蛙的族群遷移模式推論 43 第四章 梭德氏赤蛙的地理遺傳變異 46 一、材料與方法 46 (一)物種簡介 46 (二)標本描述 48 (三)DNA序列定序 49 (四)分子親緣分析 51 (五)分化年代估算 53 二、結果 54 (一)分子親緣分析 54 (二)中性檢驗 58 (三)梭德氏赤蛙分化時間的估算結果 59 三、討論 60 (一)梭德氏赤蛙的形態變異以及生態適應 60 (二)系統發育分析 62 (三)由網狀親緣結構探討台灣梭德氏赤蛙的族群擴散及遷徙 65 第五章 綜合討論 70 一、拉都希氏赤蛙與梭德氏赤蛙族群遺傳結構之比較 70 二、中性假說檢驗之比較 71 三、兩種赤蛙的分子演化速率 73 四、拉都希氏赤蛙與梭德氏赤蛙族群遷徙假說的異同 75 五、兩種赤蛙動物地理分佈的形成機制 78 六、與台灣其他動物的親緣地理特徵比較 79 七、台灣陸域脊椎動物地理區的再整理 83 結論 87 參考文獻 89 表 101 圖 116 附錄 141 表目次 表3-1 本研究所分析之拉都希氏赤蛙樣本資訊 101 表3-2拉都希氏赤蛙系群內的Fst與Kimura-2 parameter值 102 表3-3拉都希氏赤蛙各採樣點內族群的遺傳結構差異 103 表3-4拉都希氏赤蛙各系群內族群的遺傳結構差異 104 表3-5 拉都希氏赤蛙各族群遺傳結構中性測試 105 表3-6拉都希氏赤蛙系群間分化年代估算 106 表4-1 本研究所分析之梭德氏赤蛙樣本資訊 107 表4-2 梭德氏赤蛙各系群間族群的遺傳結構差異 108 表4-3 梭德氏赤蛙各基因單型間的遺傳距離以及核苷酸差異數目 109 表4-4 梭德氏赤蛙各系群間的遺傳距離以及Fst值 111 表4-5 梭德氏赤蛙各族群遺傳結構中性測試 112 表4-6 梭德氏赤蛙系群間分化年代估算 113 表4-7 烏來、三義以及里佳三地間梭德氏赤蛙的族群遺傳距離 114 表5-1兩種赤蛙生態上的差異 115 表5-2 本研究兩種赤蛙樣本的採集海拔高度 115 圖目次 圖3-1 本研究拉都希氏赤蛙採樣點分佈圖 116 圖3-2 搭配三組boostrap values的拉都希氏赤蛙鄰接樹樹形圖 117 圖3-3 拉都希氏赤蛙最大簡約法親緣樹 118 圖3-4 拉都希氏赤蛙最大似然度法親緣樹 119 圖3-5 拉都希氏赤蛙refined Buneman tree親緣圖 120 圖3-6 拉都希氏赤蛙族群樣本間的遺傳差異 121 圖3-7 拉都希氏赤蛙北部系群樣本的遺傳差異 122 圖3-8 拉都希氏赤蛙西部系群樣本的遺傳差異 122 圖3-9 拉都希氏赤蛙東部亞群樣本的遺傳差異 123 圖3-10 拉都希氏赤蛙恆春半島亞群樣本的遺傳差異 123 圖3-11 拉都希氏赤蛙東部-恆春系群樣本的遺傳差異 124 圖3-12 拉都希氏赤蛙中國大陸系群樣本的遺傳差異 124 圖3-13 拉都希氏赤蛙主要系群及亞系群系群內網狀親緣結構圖 125 圖3-14 拉都希氏赤蛙的族群親緣隔離事件假說示意圖 126 圖4-1本研究梭德氏赤蛙29處採樣點位置圖 127 圖4-2 梭德氏赤蛙臨接法親緣親緣樹 128 圖4-3 梭德氏赤蛙最大簡約法親緣樹 129 圖4-4 梭德氏赤蛙最大似然度法親緣樹 130 圖4-5 搭配三組boostrap values的梭德氏赤蛙鄰接樹樹形圖 131 圖4-6 整個梭德氏赤蛙族群樣本的遺傳差異 132 圖4-7 梭德氏赤蛙北山亞群樣本的遺傳差異 132 圖4-8 梭德氏赤蛙南山亞群樣本的遺傳差異 133 圖4-9 梭德氏赤蛙南丘亞群樣本的遺傳差異 133 圖4-10 梭德氏赤蛙東部群樣本的遺傳差異 134 圖4-11 梭德氏赤蛙北部群樣本的遺傳差異 134 圖4-12 梭德氏赤蛙最簡約網狀親緣圖 135 圖4-13 圖示多齒赤蛙與梭德氏赤蛙的分佈假說 136 圖4-14 烏來、三義以及里佳/阿里山三地間梭德氏赤蛙的NJ親緣圖 137 圖4-15梭德氏赤蛙的族群親緣隔離事件假說示意圖 138 圖5-1 時間軸上拉都希氏赤蛙與梭德氏赤蛙的族群分化事件示意圖 139 圖5-2 三個不同類群物種的台灣動物地理分佈假說 140zh_TW
dc.subjectcytochrome ben_US
dc.subjectRana sauterien_US
dc.subjectSylvirana latouchiien_US
dc.titleComparative phylogeography of two ranids in Taiwanen_US
dc.typeThesis and Dissertationzh_TW
item.fulltextno fulltext-
item.openairetypeThesis and Dissertation-
Appears in Collections:生命科學系所
Show simple item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.