Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributorYing-Ming Liouen_US
dc.contributorJeremy Jan-Way Chenen_US
dc.contributorJu-Chien Chengen_US
dc.contributorHsiao-Ling Chenen_US
dc.contributor.advisorChuan-Mu Chenen_US
dc.contributor.authorKuan, Yu-Pingen_US
dc.identifier.citationAntequera, F., and Bird, A. 1993. Number of CpG islands and genes in human and mouse. PNAS. 90: 11995-11999. Asami, S., Manabe, H., Miyake, J., Tsurudome, Y., Hirano, T., Yamaguchi, R., Itoh, H., and Kasai, H. 1997. Cigarette smoking induces an increase in oxidative DNA damage, 8-hydroxydeoxyguanosine, in a central site of the human lung. Carcinogenesis. 18: 1763-1766. Ballmaier, D., and Epe, B. 1995. Oxidative DNA damage induced by potassium bromate under cell-free conditions and in mammalian cells. Carcinogenesis. 16: 335-342. Barazzone, C., Horowitz, S., Donati, Y. R., Rodriguez, I., and Piguet, P. F. 1998. Oxygen toxicity in mouse lung: pathways to cell death. Am J Respir Cell Mol Biol. 19: 573-581. Barazzone, C., and White, C. W. 2000. Mechanisms of cell injury and death in hyperoxia: role of cytokines and Bcl-2 family proteins. Am J Respir Cell Mol Biol. 22: 517-519. Baylin, S. B. 1997. Tying it all together: epigenetics, genetics, cell cycle, and cancer. Science. 277: 1948-1949. Bernard, G. R., Artigas, A., Brigham, K. L., Carlet, J., Falke, K., Hudson, L., Lamy, M., Legall, J. R., Morris, A., and Spragg, R. 1994. The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med. 149: 818-824. Bestor, T., Laudano, A., Mattaliano, R., and Ingram, V. 1988. Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells. The carboxyl-terminal domain of the mammalian enzymes is related to bacterial restriction methyltransferases. J Mol Biol. 203: 971-983. Bestor, T. H., Hellewell, S. B., and Ingram, V. M. 1984. Differentiation of two mouse cell lines is associated with hypomethylation of their genomes. Mol Cell Biol. 4: 1800-1806. Bestor, T. H., and Verdine, G. L. 1994. DNA methyltransferases. Curr Opin Cell Biol. 6: 380-389. Bird, A. 1992. The essentials of DNA methylation. Cell. 70: 5-8. Bird, A. 2002. DNA methylation patterns and epigenetic memory. Genes Dev. 16: 6-21. Bird, A. P. 1986. CpG-rich islands and the function of DNA methylation. Nature. 321: 209-213. Bonikos, D. S., Bensch, K. G., and Northway, W. H., Jr. 1976. Oxygen toxicity in the newborn. The effect of chronic continuous 100 percent oxygen exposure on the lungs of newborn mice. Am J Pathol. 85: 623-650. Boyes, J., and Bird, A. 1992. Repression of genes by DNA methylation depends on CpG density and promoter strength: evidence for involvement of a methyl-CpG binding protein. Embo J. 11: 327-333. Cedar, H. 1988. DNA methylation and gene activity. Cell. 53: 3-4. Chang, L. Y., Kang, B. H., Slot, J. W., Vincent, R., and Crapo, J. D. 1995. Immunocytochemical localization of the sites of superoxide dismutase induction by hyperoxia in rat lungs. Lab Invest. 73: 29-39. Chao, M. R., Wang, C. J., Yang, H. H., Chang, L. W., and Hu, C. W. 2005. Rapid and sensitive quantification of urinary N7-methylguanine by isotope-dilution liquid chromatography/electrospray ionization tandem mass spectrometry with on-line solid-phase extraction. Rapid Commun Mass Spectrom. 19: 2427-2432. Chen, Q., Chai, Y. C., Mazumder, S., Jiang, C., Macklis, R. M., Chisolm, G. M., and Almasan, A. 2003. The late increase in intracellular free radical oxygen species during apoptosis is associated with cytochrome c release, caspase activation, and mitochondrial dysfunction. Cell Death Differ. 10: 323-334. Cross, S. H., and Bird, A. P. 1995. CpG islands and genes. Curr Opin Genet Dev. 5: 309-314. Crystal, R. G. 1991. Oxidants and respiratory tract epithelial injury: pathogenesis and strategies for therapeutic intervention. Am J Med. 91: 39S-44S. Fielding, S., Short, C., Davies, K., Wald, N., Bridges, B. A., and Waters, R. 1989. Studies on the ability of smoke from different types of cigarettes to induce DNA single-strand breaks in cultured human cells. Mutat Res. 214: 147-151. Freeman, B. A., and Crapo, J. D. 1981. Hyperoxia increases oxygen radical production in rat lungs and lung mitochondria. J Biol Chem. 256: 10986-10992. Fukae, J., Takanashi, M., Kubo, S., Nishioka, K., Nakabeppu, Y., Mori, H., Mizuno, Y., and Hattori, N. 2005. Expression of 8-oxoguanine DNA glycosylase (OGG1) in Parkinson''s disease and related neurodegenerative disorders. Acta Neuropathol (Berl). 109: 256-262. Gackowski, D., Speina, E., Zielinska, M., Kowalewski, J., Rozalski, R., Siomek, A., Paciorek, T., Tudek, B., and Olinski, R. 2003. Products of oxidative DNA damage and repair as possible biomarkers of susceptibility to lung cancer. Cancer Res. 63: 4899-4902. Gitan, R. S., Shi, H., Chen, C. M., Yan, P. S., and Huang, T. H. 2002. Methylation-specific oligonucleotide microarray: a new potential for high-throughput methylation analysis. Genome Res. 12: 158-164. Gottlieb, E., Vander Heiden, M. G., and Thompson, C. B. 2000. Bcl-x(L) prevents the initial decrease in mitochondrial membrane potential and subsequent reactive oxygen species production during tumor necrosis factor alpha-induced apoptosis. Mol Cell Biol. 20: 5680-5689. Grollman, A. P., and Moriya, M. 1993. Mutagenesis by 8-oxoguanine: an enemy within. Trends Genet. 9: 246-249. Guidot, D. M., McCord, J. M., Wright, R. M., and Repine, J. E. 1993. Absence of electron transport (Rho 0 state) restores growth of a manganese-superoxide dismutase-deficient Saccharomyces cerevisiae in hyperoxia. Evidence for electron transport as a major source of superoxide generation in vivo. J Biol Chem. 268: 26699-26703. Hattori, Y., Nishigori, C., Tanaka, T., Uchida, K., Nikaido, O., Osawa, T., Hiai, H., Imamura, S., and Toyokuni, S. 1996. 8-hydroxy-2''-deoxyguanosine is increased in epidermal cells of hairless mice after chronic ultraviolet B exposure. J Invest Dermatol. 107: 733-737. Herman, J. G., Graff, J. R., Myohanen, S., Nelkin, B. D., and Baylin, S. B. 1996. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A. 93: 9821-9826. Hirotsune, S., Hatada, I., Komatsubara, H., Nagai, H., Kuma, K., Kobayakawa, K., Kawara, T., Nakagawara, A., Fujii, K., Mukai, T., and et al. 1992. New approach for detection of amplification in cancer DNA using restriction landmark genomic scanning. Cancer Res. 52: 3642-3647. Howard, J., Jones, G. L., Oliver, C., and Watson, K. 2002. Dietary intake of antioxidant supplements modulate antioxidant status and heat shock protein 70 synthesis. Redox Rep. 7: 308-311. Hu, C. W., Wang, C. J., Chang, L. W., and Chao, M. R. 2006. Clinical-scale high-throughput analysis of urinary 8-oxo-7,8-dihydro-2''-deoxyguanosine by isotope-dilution liquid chromatography-tandem mass spectrometry with on-line solid-phase extraction. Clin Chem. 52: 1381-1388. Hu, J., de Souza-Pinto, N. C., Haraguchi, K., Hogue, B. A., Jaruga, P., Greenberg, M. M., Dizdaroglu, M., and Bohr, V. A. 2005. Repair of formamidopyrimidines in DNA involves different glycosylases: role of the OGG1, NTH1, and NEIL1 enzymes. J Biol Chem. 280: 40544-40551. Hyun, J. W., Cheon, G. J., Kim, H. S., Lee, Y. S., Choi, E. Y., Yoon, B. H., Kim, J. S., and Chung, M. H. 2002. Radiation sensitivity depends on OGG1 activity status in human leukemia cell lines. Free Radic Biol Med. 32: 212-220. Ilizarov, A. M., Koo, H. C., Kazzaz, J. A., Mantell, L. L., Li, Y., Bhapat, R., Pollack, S., Horowitz, S., and Davis, J. M. 2001. Overexpression of manganese superoxide dismutase protects lung epithelial cells against oxidant injury. Am J Respir Cell Mol Biol. 24: 436-441. Ionov, Y., Peinado, M. A., Malkhosyan, S., Shibata, D., and Perucho, M. 1993. Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature. 363: 558-561. Issa, J. P., Ottaviano, Y. L., Celano, P., Hamilton, S. R., Davidson, N. E., and Baylin, S. B. 1994. Methylation of the oestrogen receptor CpG island links ageing and neoplasia in human colon. Nat Genet. 7: 536-540. Jaenisch, R., and Bird, A. 2003. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet. 33 Suppl: 245-254. Kazzaz, J. A., Xu, J., Palaia, T. A., Mantell, L., Fein, A. M., and Horowitz, S. 1996. Cellular oxygen toxicity. Oxidant injury without apoptosis. J Biol Chem. 271: 15182-15186. Klungland, A., Rosewell, I., Hollenbach, S., Larsen, E., Daly, G., Epe, B., Seeberg, E., Lindahl, T., and Barnes, D. E. 1999. Accumulation of premutagenic DNA lesions in mice defective in removal of oxidative base damage. Proc Natl Acad Sci U S A. 96: 13300-13305. Kohno, T., Kawanishi, M., Inazawa, J., and Yokota, J. 1998. Identification of CpG islands hypermethylated in human lung cancer by the arbitrarily primed-PCR method. Hum Genet. 102: 258-264. Kohno, T., Morishita, K., Takano, H., Shapiro, D. N., and Yokota, J. 1994. Homozygous deletion at chromosome 2q33 in human small-cell lung carcinoma identified by arbitrarily primed PCR genomic fingerprinting. Oncogene. 9: 103-108. Kunisada, M., Sakumi, K., Tominaga, Y., Budiyanto, A., Ueda, M., Ichihashi, M., Nakabeppu, Y., and Nishigori, C. 2005. 8-Oxoguanine formation induced by chronic UVB exposure makes Ogg1 knockout mice susceptible to skin carcinogenesis. Cancer Res. 65: 6006-6010. Kuo, K. C., McCune, R. A., Gehrke, C. W., Midgett, R., and Ehrlich, M. 1980. Quantitative reversed-phase high performance liquid chromatographic determination of major and modified deoxyribonucleosides in DNA. Nucleic Acids Res. 8: 4763-4776. Leanderson, P., and Tagesson, C. 1990. Cigarette smoke-induced DNA-damage: role of hydroquinone and catechol in the formation of the oxidative DNA-adduct, 8-hydroxydeoxyguanosine. Chem Biol Interact. 75: 71-81. Leanderson, P., and Tagesson, C. 1992. Cigarette smoke-induced DNA damage in cultured human lung cells: role of hydroxyl radicals and endonuclease activation. Chem Biol Interact. 81: 197-208. Lee, P. J., and Choi, A. M. 2003. Pathways of cell signaling in hyperoxia. Free Radic Biol Med. 35: 341-350. Liang, M. T., Podolka, T. D., and Chuang, W. J. 2005. Panax notoginseng supplementation enhances physical performance during endurance exercise. J Strength Cond Res. 19: 108-114. Livak, K. J., and Schmittgen, T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 25: 402-408. Luhr, O. R., Antonsen, K., Karlsson, M., Aardal, S., Thorsteinsson, A., Frostell, C. G., and Bonde, J. 1999. Incidence and mortality after acute respiratory failure and acute respiratory distress syndrome in Sweden, Denmark, and Iceland. The ARF Study Group. Am J Respir Crit Care Med. 159: 1849-1861. Merritt, T. A. 1982. Oxygen exposure in the newborn guinea pig lung lavage cell populations, chemotactic and elastase response: a possible relationship to neonatal bronchopulmonary dysplasia. Pediatr Res. 16: 798-805. Nakamura, J., Walker, V. E., Upton, P. B., Chiang, S. Y., Kow, Y. W., and Swenberg, J. A. 1998. Highly sensitive apurinic/apyrimidinic site assay can detect spontaneous and chemically induced depurination under physiological conditions. Cancer Res. 58: 222-225. Nakayama, T., Kaneko, M., Kodama, M., and Nagata, C. 1985. Cigarette smoke induces DNA single-strand breaks in human cells. Nature. 314: 462-464. Nakayama, T., Kodama, M., and Nagata, C. 1984. Generation of hydrogen peroxide and superoxide anion radical from cigarette smoke. Gann. 75: 95-98. O''Reilly, M. A., Staversky, R. J., Finkelstein, J. N., and Keng, P. C. 2003. Activation of the G2 cell cycle checkpoint enhances survival of epithelial cells exposed to hyperoxia. Am J Physiol Lung Cell Mol Physiol. 284: L368-375. O''Reilly, M. A., Staversky, R. J., Huyck, H. L., Watkins, R. H., LoMonaco, M. B., D''Angio, C. T., Baggs, R. B., Maniscalco, W. M., and Pryhuber, G. S. 2000. Bcl-2 family gene expression during severe hyperoxia induced lung injury. Lab Invest. 80: 1845-1854. Okazaki, T., Takita, J., Kohno, T., Handa, H., and Yokota, J. 1996. Detection of amplified genomic sequences in human small-cell lung carcinoma cells by arbitrarily primed-PCR genomic fingerprinting. Hum Genet. 98: 253-258. Padmanabhan, R. V., Gudapaty, R., Liener, I. E., Schwartz, B. A., and Hoidal, J. R. 1985. Protection against pulmonary oxygen toxicity in rats by the intratracheal administration of liposome-encapsulated superoxide dismutase or catalase. Am Rev Respir Dis. 132: 164-167. Peinado, M. A., Malkhosyan, S., Velazquez, A., and Perucho, M. 1992. Isolation and characterization of allelic losses and gains in colorectal tumors by arbitrarily primed polymerase chain reaction. Proc Natl Acad Sci U S A. 89: 10065-10069. Pryor, W. A., Stone, K., Zang, L. Y., and Bermudez, E. 1998. Fractionation of aqueous cigarette tar extracts: fractions that contain the tar radical cause DNA damage. Chem Res Toxicol. 11: 441-448. Raffray, M., and Cohen, G. M. 1997. Apoptosis and necrosis in toxicology: a continuum or distinct modes of cell death? Pharmacol Ther. 75: 153-177. Rancourt, R. C., Hayes, D. D., Chess, P. R., Keng, P. C., and O''Reilly, M. A. 2002. Growth arrest in G1 protects against oxygen-induced DNA damage and cell death. J Cell Physiol. 193: 26-36. Ravanat, J. L., Douki, T., Duez, P., Gremaud, E., Herbert, K., Hofer, T., Lasserre, L., Saint-Pierre, C., Favier, A., and Cadet, J. 2002. Cellular background level of 8-oxo-7,8-dihydro-2''-deoxyguanosine: an isotope based method to evaluate artefactual oxidation of DNA during its extraction and subsequent work-up. Carcinogenesis. 23: 1911-1918. Ricci, J. E., Gottlieb, R. A., and Green, D. R. 2003. Caspase-mediated loss of mitochondrial function and generation of reactive oxygen species during apoptosis. J Cell Biol. 160: 65-75. Robertson, K. D. 2005. DNA methylation and human disease. Nat Rev Genet. 6: 597-610. Romashko, J., 3rd, Horowitz, S., Franek, W. R., Palaia, T., Miller, E. J., Lin, A., Birrer, M. J., Scott, W., and Mantell, L. L. 2003. MAPK pathways mediate hyperoxia-induced oncotic cell death in lung epithelial cells. Free Radic Biol Med. 35: 978-993. Roper, J. M., Mazzatti, D. J., Watkins, R. H., Maniscalco, W. M., Keng, P. C., and O''Reilly, M. A. 2004. In vivo exposure to hyperoxia induces DNA damage in a population of alveolar type II epithelial cells. Am J Physiol Lung Cell Mol Physiol. 286: L1045-1054. Schmitt, F., Oakeley, E. J., and Jost, J. P. 1997. Antibiotics induce genome-wide hypermethylation in cultured Nicotiana tabacum plants. J Biol Chem. 272: 1534-1540. Shen, J., Wanibuchi, H., Salim, E. I., Wei, M., Kinoshita, A., Yoshida, K., Endo, G., and Fukushima, S. 2003. Liver tumorigenicity of trimethylarsine oxide in male Fischer 344 rats--association with oxidative DNA damage and enhanced cell proliferation. Carcinogenesis. 24: 1827-1835. Shi, H., Yan, P. S., Chen, C. M., Rahmatpanah, F., Lofton-Day, C., Caldwell, C. W., and Huang, T. H. 2002. Expressed CpG island sequence tag microarray for dual screening of DNA hypermethylation and gene silencing in cancer cells. Cancer Res. 62: 3214-3220. Shimabukuro, D. W., Sawa, T., and Gropper, M. A. 2003. Injury and repair in lung and airways. Crit Care Med. 31: S524-531. Shimoda, R., Nagashima, M., Sakamoto, M., Yamaguchi, N., Hirohashi, S., Yokota, J., and Kasai, H. 1994. Increased formation of oxidative DNA damage, 8-hydroxydeoxyguanosine, in human livers with chronic hepatitis. Cancer Res. 54: 3171-3172. Singh, K. K., Sigala, B., Sikder, H. A., and Schwimmer, C. 2001. Inactivation of Saccharomyces cerevisiae OGG1 DNA repair gene leads to an increased frequency of mitochondrial mutants. Nucleic Acids Res. 29: 1381-1388. Tate, P. H., and Bird, A. P. 1993. Effects of DNA methylation on DNA-binding proteins and gene expression. Curr Opin Genet Dev. 3: 226-231. Tazi, J., and Bird, A. 1990. Alternative chromatin structure at CpG islands. Cell. 60: 909-920. Toyota, M., Ho, C., Ahuja, N., Jair, K. W., Li, Q., Ohe-Toyota, M., Baylin, S. B., and Issa, J. P. 1999. Identification of differentially methylated sequences in colorectal cancer by methylated CpG island amplification. Cancer Res. 59: 2307-2312. Turrens, J. F., Crapo, J. D., and Freeman, B. A. 1984. Protection against oxygen toxicity by intravenous injection of liposome-entrapped catalase and superoxide dismutase. J Clin Invest. 73: 87-95. Wang, X., Ryter, S. W., Dai, C., Tang, Z. L., Watkins, S. C., Yin, X. M., Song, R., and Choi, A. M. 2003. Necrotic cell death in response to oxidant stress involves the activation of the apoptogenic caspase-8/bid pathway. J Biol Chem. 278: 29184-29191. Welsh, J., and McClelland, M. 1991. Genomic fingerprinting using arbitrarily primed PCR and a matrix of pairwise combinations of primers. Nucleic Acids Res. 19: 5275-5279. White, C. W., Jackson, J. H., Abuchowski, A., Kazo, G. M., Mimmack, R. F., Berger, E. M., Freeman, B. A., McCord, J. M., and Repine, J. E. 1989. Polyethylene glycol-attached antioxidant enzymes decrease pulmonary oxygen toxicity in rats. J Appl Physiol. 66: 584-590. Wiencke, J. K. 2002. DNA adduct burden and tobacco carcinogenesis. Oncogene. 21: 7376-7391. Wispe, J. R., Warner, B. B., Clark, J. C., Dey, C. R., Neuman, J., Glasser, S. W., Crapo, J. D., Chang, L. Y., and Whitsett, J. A. 1992. Human Mn-superoxide dismutase in pulmonary epithelial cells of transgenic mice confers protection from oxygen injury. J Biol Chem. 267: 23937-23941. Wu, M., He, Y. H., Kobune, M., Xu, Y., Kelley, M. R., and Martin, W. J., 2nd 2002. Protection of human lung cells against hyperoxia using the DNA base excision repair genes hOgg1 and Fpg. Am J Respir Crit Care Med. 166: 192-199. Xiong, Z., and Laird, P. W. 1997. COBRA: a sensitive and quantitative DNA methylation assay. Nucleic Acids Res. 25: 2532-2534. Yamamoto, F., Nishimura, S., and Kasai, H. 1992. Photosensitized formation of 8-hydroxydeoxyguanosine in cellular DNA by riboflavin. Biochem Biophys Res Commun. 187: 809-813. Yen, R. W., Vertino, P. M., Nelkin, B. D., Yu, J. J., el-Deiry, W., Cumaraswamy, A., Lennon, G. G., Trask, B. J., Celano, P., and Baylin, S. B. 1992. Isolation and characterization of the cDNA encoding human DNA methyltransferase. Nucleic Acids Res. 20: 2287-2291.en_US
dc.description.abstract臨床上,氧氣支持性療法常用於患有呼吸窘迫症候群的新生兒、小孩及成人上。氧氣支持性療法常使用大於90%氧氣,然而,高濃度氧氣會導致肺泡內皮細胞及第一型上皮細胞產生膨脹及細胞凋亡。目前仍不清楚高濃度氧氣如何使細胞受損及死亡,但值得注意的是高濃度氧氣會導致細胞內的活性含氧物質提高,如:氧化氫、超氧陰離子、過氧化氫,會導致氧化壓力的增加,進而對DNA、蛋白質及脂質造成危害。此篇研究中,我們建立了一套模擬高濃度氧氣導致損傷的動物模式,利用高效能液相層析串連質譜儀配合線上固相萃取技術,偵測高濃度氧氣環境中雌性CD-1 (ICR)小鼠的肺臟及肝臟內氧化壓力生物指標8-OHdG並利用CpG islands生物晶片來探討細胞對高氧環境的反應。發現8-OHdG會在起初暴露高濃度氧氣的二十四小時逐漸降低,至四十八小時降至最低量,突然地在七十二小時後顯著性的提高。由此可知,長時間暴露高濃度氧氣對細胞的損傷是複雜的反應過程,可能有許多基因的參與,晶片的技術將是一個有力的研究工具。我們使用CpG island生物晶片大範圍篩選小鼠啟動子區域,來研究細胞對此氧化壓力的反應,生物晶片可以同時分析7,300個CpG island甲基化程度且可專一地鎖定關於氧化壓力、發炎、細胞週期、細胞凋亡及細胞外修復的基因。我們發現一群異常甲基化的基因,如:Ogg1、細胞色素P450。Ogg1啟動子區域的CpG island甲基化程度在調節基因的表現扮演著重要的角色且Ogg1的活化可以移除8-OHdG。我們發現高濃度氧環境會影響不同時間序列上基因的表現及epigenetic改變,所以這些異常甲基化的CpG island可做為急性呼吸窘迫症候群的epigenetic markers。zh_TW
dc.description.abstractSupplemental oxygen is a common clinical intervention for newborns, children, and adults with respiratory distress. Unfortunately, oxygen levels>90% cause extensive swelling and necrosis of alveolar endothelial and type I epithelial cells. It remains unclear how hyperoxia injures and kills cells. It is believed that cytotoxic reactive oxygen species (ROS) of hydrogen peroxide, superoxide anion, and hydroxyl radicals may causes damages of DNA, protein, and lipids. In this study, we established a hyperoxia-induced injury mice model associated with the quantitative determination of 8-oxo-7, 8-dihydro-2'-deoxyguanosine (8-OHdG) and the CpG islands microarray technology for studying the mechanisms behind this response. A rapid HPLC/MS/MS method coupled with a solid-phase extraction (SPE) system was used to determine 8-OHdG which is a potential marker of oxidative DNA damage by ROS in the lungs and livers of female CD-1 (ICR) mice. The mean level of 8-OHdG in 17 wild type mice were 24.75 ±1.75 8-OHdG per 106 dG in lungs and 25.68 ±2.79 8-OHdG per 106 dG in livers. Intriguingly, we found that the mean level of 8-OHdG was decreased in 24 and 48h post hyperoxia-treated both in lungs and livers but significant raised both in 72h. Clearly, the development of lung injury during prolonged oxygen exposure is a complex process, associated with changes in the expression of a number of genes important in the adaptive response to hyperoxia. Because it appears to be the balance between these factors, rather than any one factor in the development of lung injury during hyperoxia, array technology would provide a powerful tool. Accordingly, a large-scale mouse CpG island microarray was first used to study cellular responses to DNA damage in the differential expression of 7,300 genes over time, and then specifically looked at changes in the overall pattern of gene expression associated with oxidative stress, inflammation, cell cycle progression, apoptosis, and extracellular matrix repairing. We focused on changes occurring in the early stages of hyperoxic injury (24, 48, and 72h of oxygen exposure) to dissect gene methylation abnormality, such as Ogg1, Cytochrome P450 family (like Cyp7a1). 8-OHdG can be removed from damaged DNA by Ogg1, and the methylation of its CpG islands plays an important role in regulating gene expression. These CpG island loci those are potentially useful as epigenetic markers for predicting acute respiratory distress syndrome (ARDS). Consistent with this notion, hyperoxia environment stimulated time-dependent gene expression and epigenetic changes. In summary, prolonged high concentration of oxygen exposure damaging tissues is a complex process. This study provides a niche to understand the mechanisms for patients suffering from the toxic effects of supplemental oxygen therapy.en_US
dc.description.tableofcontents致謝 i 摘要 iii Abstract iv Contents vi Table contents viii Figure contents ix I. Exordium 1 II. Literature Review 2 [I] Supplement oxygen therapy 2 [II] Oxidative stress and DNA damage 3 1. Oxidative stress 3 2. Repair system of DNA damage 5 3. DNA damage and disease 6 [III] Gene methylation in promoter region 7 1. Gene methylated mechanism 7 2. Promoter region methylation 8 [IV] Detective techniques of gene methylation 9 1. Detection of total DNA methylation 9 2. Signal-gene methylated detection 10 3. Multiple-gene methylated detection 12 4. Global methylation detected 13 III. The Incentives and Aims of This Research 15 IV. Materials and Methods 16 [I] Experiment animals 16 [II] Hyperoxia-induced mice model 16 [III] 8-OHdG detection 16 1. DNA extraction and digestion 16 2. Liquid chromatography/electrospray ionization (ESI) tandem mass spectrometry coupled with on-line solid phase extraction 18 [IV] Differentiation methylation hybridization microarray 19 1. Sample preparation 20 2. Fluorescent labeling and hybridization 24 3. Detection fluorescence and analysis 24 [V] Combined bisulfite restriction analysis 25 1. DNA extraction and sodium bisulfite treatment 25 2. Polymerase chain reaction amplification 26 3. Restriction enzyme digestion 26 4. Polyacrylamide gel and quantitation 27 [VI] Bisulfite sequencing 27 1. DNA extraction and sodium bisulfite treatment 27 2. Polymerase chain reaction amplification 28 3. Ligation and transformation 28 4. Plasmid DNA extraction and sequencing 29 [VII] Detection of mRNA expression 30 1. RNA extraction 30 2. cDNA preparation 31 3. Real-time reverse transcription polymerase chain reaction 33 4. Data mining and analysis 34 [VIII] Statistical methods and analysis 34 V. Results and Discussion 35 [I] Hyperoxia-induced mice model 35 [II] 8-OHdG levels in lung and liver 35 [III] Differentiation methylation hybridization microarray 36 [IV] Combined bisulfite restriction analysis 37 [V] Real-time reverse transcription polymerase chain reaction 37 VI. Conclusion 39 VII. Tables 40 VIII. Figures and Legends 43 IX. References 57zh_TW
dc.subjectOxidative stressen_US
dc.subjectSupplemental oxygen therapyen_US
dc.titleIn vivo DNA damage and gene epigenetic changes during hyperoxia injury response to supplement oxygen therapyen_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.fulltextno fulltext-
Appears in Collections:生命科學系所
Show simple item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.