Please use this identifier to cite or link to this item:
標題: 具輔助翼飛行器之靜動態氣動力特性水洞試驗
Static and Dynamic Aerocharacteristics Testing of a Strake-Wing Aerial Vehicle in Water Tunnel
作者: 張立民
Chang, Li-Ming
關鍵字: Static and Dynamic Testing;靜動態試驗;NASA TP-1803;Water tunnel;Flow visualization;Aerodynamic characteristics;NASA TP-1803;水洞;流場觀測;氣動力特性
出版社: 機械工程學系所
引用: 1) Lamar, J. E. and Frink, N. T.: Experimental and Analytical Study of the Longitudinal Aerodynamic Characteristics of Analytically and Empirically Designed Strake-Wing Configurations at Subcritical Speeds, NASA TP-1803, 1981. 2) Lamar, J. E.: Analysis and Design of Strake-Wing Configurations, Journal of Aircraft, 19, 6 (1980), pp. 442-448. 3) Den Boer, R. G. and Cunningham, A. M., Jr.: Low-Speed Unsteady Aerodynamics of a Pitching Straked Wing at High Incidence-Part I: Test Program, Journal of Aircraft, 27, 1 (1990), pp. 23-30. 4) Cunningham, A. M., Jr. and Den Boer, R. G.: Low-Speed Unsteady Aerodynamics of a Pitching Straked Wing at High Incidence-Part II: Harmonic Analysis, Journal of Aircraft, 27, 1 (1990), pp. 31-41. 5) Erickson, G. E.: Water-Tunnel Studies of Leading Edge Vortices, Journal of Aircraft, 19, 6 (1982), pp. 442-448. 6) Cunningham, A. M., Jr. and Bushlow, T.: Steady and Unsteady Force Testing of Fighter Aircraft Models in a Water Tunnel, AIAA, 1990-2815, 1990, pp. 222-237. 7) Hebbar, S. K., Platzer, M, F. and Fritzelas, A. E.: Reynolds Number Effects on the Vertical-Flow Structure Generated by a Double-Delta Wing, Experiments in Fluid, 28, 3 (2000), pp. 206-216. 8) Gursul, I., Taylor, G. and Wooding, C. L.: Vortex Flows over Fixed-Wing Micro Air Vehicles, AIAA Paper 2002-0698, 2002. 9) Verhaagen, N. G.: Effect of Reynolds Number on Flow over 76/40-Degree Double-Delta Wings, Journal of Aircraft, 39, 6 (2002), pp. 1045-1052. 10) Shyu, L. S. and Chuang, S. H.: Investigation of Model Wake Blockage Effects at High Angles of Attack in Low-Speed Tunnel, Trans. Japan Soc. Aero. Space Sci., 51, 171 (2008), pp. 37-42. 11) Chang, L. M., Lee, H. J. Chuang, S. H., Chiu, K. J., Chien, K. T. and Hsu, L. H.: Experimental Investigation on Low-Speed Aerodynamic Performance of Stealth Crafts at High Angles of Attack in a Water Tunnel (in Chinese), Journal of Aeronautics Astronautics and Aviation, Series B, 39, 2 (2007), pp. 99-106. 12) Chen, J. M. and Huang, T. G.: Lateral Oscillations of an Aircraft Model at High Angles of Attack, Journal of Fluids and Structures, 10, (1996), pp. 601-614. 13) Wang, S. W., Chuang, S. H., Wu, C. H., Hsu, L. H. and Huang, C. M.: Study on Static and Dynamic Aerodynamic Characteristics of Double Delta Wing at High Angles of Attack, Journal of Aeronautics Astronautics and Aviation, Series A, 40, 3 (2008), pp. 151-162. 14) Erm, L. P.: Dynamic Testing of Aircraft Models in a Water Tunnel, 15th Australasian Fluid Mechanics Conference, University of Sydney, Sydney, Australia, Dec. 13-14, 2004. 15) Erm, L. P.: Development and Use of a Dynamic-Testing Capability for the DSTO Water Tunnel, Defence Science and Technology Organisation, Victoria, Australia, 2000. 16) Kerho, M.: Ultra Low Reynolds Number Aircraft Testing Facility, AIAA 2007-959, 45th Aerospace Sciences Meeting, Reno, Nevada, Jan. 8-11, 2007. 17) Cotton, S. J. and Bjarke, Lisa J.: Flow-visualization study of the X-29A aircraft at high angles of attack using a 1/48-scale model, NASA Technical Memorandum 104268, Aug. 1994. 18) Chuang, S. H., Wang, S. W., Hsu. L. H., Huang, C. M.: Experimental Investigation on Aerodynamics Characteristics of Static and Dynamic of X-45A at High Angle of Attack, AASRC/CCAS Joint Conference, Dec. 11, 2006. 19) Wu, C. H.: Experimental Investigation on Aerodynamic Characteristics of Statics and Dynamics of 76°-40° Double Delta Wing at High Angle of Attack, Master''s Thesis in NCHU, 2006. 20) Liu, P. Q., Deng, X. Y. and Ma, B. F.: Water Tunnel Flow Visualization Study of a Canard-Configuration Aircraft model, Experiments and Measurements in Fluid Mechanics, 16, 3 (2002), pp. 26-31. 21) Hui, G. and Lian, Q. X.: Simultaneous dynamic force measurements and Flow Visualization Techniques in Water Tunnel, Experiments and Measurements in Fluid Mechanics, 18, 1 (2004), pp. 75-88. 22) Neuhart, D. H. and Rhode. M. N.: Water-Tunnel Investigation of Concepts for Alleviation of Adverse Inlet Spillage Interactions with External Stores”, NASA Technical Memorandum 4181, Apr. 1990. 23) Johnson, S. A. and David, F. F.: Water-Tunnel Study Results of a TF/A-18 and F/A-18 Canopy Flow Visualization, NASA Technical Memorandum 101705, Mar. 1990 24) Munson, B. R., Young, D. F.: Fundamentals of Fluid Mechanics, Wiley, New York, 2005. 25) Anderson, J. D., Jr.: Fundamentals of Aerodynamics, McGraw-Hill, Boston, 2005, pp. 19-388. 26) Rom, J.: High Angle of Attack Aerodynamics: Subsonic, Transonic, and Supersonic Flows, Springer-Verlag, New York, 1992, pp. 8-61. 27) Brandt, S. A., Stiles, R. J., Bertin, J. J. and Whitford, R.: Introduction to Aeronautics: A Design Perspective, AIAA Education Series, 1997. 28) Dole, C. E. and Lewis, J. E.: Flight Theory and Aerodynamics: A Practical Guide for Operational Safety, Wiley, Reston, Virginia, 2000.
先進戰機輔助翼與主翼的結合設計具有某些空氣動力學之優勢潛力,近年來已成為重要的研究課題。本文主要以水洞流場觀測探討具輔助翼之NASA TP-1803模型在靜態與動態條件下之高攻角氣動力特性。本實驗包含在兩個側滑角(β = 0度、10度)狀況下,不同的動態俯仰頻率之氣動力特性,並與靜態試驗作比較。在靜態攻角為20度至50度的實驗條件下,當側滑角為10度時,輔助翼與主翼發生渦流破裂是較晚於當側滑角0度時,實驗顯示模型於側滑角10度時之正向力係數大於當側滑角為0度時。同時在動態下俯過程中,氣動力中心提供機鼻向上更多的動量,與靜態條件下比較,縱向顯然更不穩定。此外,不同的側滑角使渦流產生非對稱破裂並對滾轉動量係數有顯著的影響。而當動態俯仰頻率增加時,主翼上的渦流流線變得更長並在動態上仰過程中提供更多的正向力,遲滯環亦隨動態俯仰頻率的增加變大。

Advanced fighter design with strake-wing configuration has certain aerodynamics superiority potential, therefore the associated researches have become more important in recent decades. This paper is focused on flow visualization, normal force and pitch/roll moments testing of the NASA TP-1803 strake-wing model at high attack angles. Whereas the dynamic aerocharacteristics pitching with various reduced frequencies and two sideslip angles β = 0° and 10° in the water tunnel are compared with those for static case. For α = 20°~50°, the strake/wing vortices breakdown positions occur later for β = 10° than for β = 0°. The value of normal force coefficient under sideslip angle β = 10° is greater than β = 0° at high attack angles. In the pitch-down process, the aerodynamic center creates a nose-up pitching moment and the model would become unstable condition compared with static condition. The significant asymmetrical vortex breakdown over the strake/wing has great effect on roll moment coefficients for large sideslip angle. As the pitch reduced frequency increases, the vortices of the wing cause to sustain longer flow lines and provide more normal force during pitch-up motion. Besides, the hysteresis loop of normal force curve is larger for higher reduced frequencies.
其他識別: U0005-1611200916590300
Appears in Collections:機械工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.