Please use this identifier to cite or link to this item:
標題: 雙足機器人之動態步行分析與控制
Dynamic Walking Analysis and Control of the Biped Robot
作者: 林煜程
Lin, Yu-Cheng
關鍵字: Biped Robot;雙足步行機器人;Off-Line;Zero-Moment-Point;Fuzzy Controller;離線式;零力矩點;模糊控制器
出版社: 機械工程學系所
引用: [1] History of Humanoid Robot in Waseda University, [2] 日本本田Inc. ASIMO網站 , [3] 日本新力Inc. QRIO網站 , [4] Takanishi Laboratory ,Faculty of Science and Engineering,Waseda University, [5] I.-W. Park, J.-Y. Kim, J. Lee and J.-H. Oh ,”Online Free Walking Trajectory Generation for Biped Humanoid Robot KHR-3(HUBO),Proc. of the IEEE Int. Conf. on Robotics and Automation, pp.1231-1236, 2006. [6] K. Yokoi, F. Kanehiro, K. Kaneko, K. Fujiwara, S. Kajita and H. Kirukawa,”A Honda Humanoid Robot Controlled by Aist Software,”Proc. of the IEEE-RAS Int. Conf. on Humanoid Robot, pp. 259-264, 2001. [7] S. Kajita, O. Matsumoto and M. Saigo,”Real-Time 3D Walking Pattern Generation for a Biped Robot with Telescopic Leg,”Proc. of the IEEE Int. Conf. on Robotics and Automation, pp. 2299-2306, 2001. [8] D. Kim, S.-J. Seo and G.-T. Park ,”Zero-Moment-Point Trajectory Modeling of a Biped Walking Robot Using an Adaptive Neuro-Fuzzy System,” Proc.of the IEE Int. Conf. on Control Theory Appl., Vol.152 No. 4, July 2005. [9] K. Nishiwaki, S. Kagami, Y. Kuniyoshi, M. Inaba and H.Inoue,” Online Generation of Humanoid Walking Motion Based on a Fast Generation Method of Motion Pattern that Follows Desired ZMP,” Proc. of the IEEE-RSJ Int. Conf. on Intelligent Robots and Systems, pp.2684-2689, 2002. [10] 唐義欣,以嵌入式平台實現人型機器人之自主行走系統,中央大學碩士論文,民國96年7月。 [11] 林岱夆,具影像測距之二足步行機器人,台灣科技大學碩士論文,民國96年7月。 [12] M. Xie,Fundamentals of ROBOTICS: Linking Perception to Action,World Scientific, 2004. [13] InvenSense, IDG-300 Datasheet, 2008. [14] Parallax, Inc. ,”Memsic 2125 Accelerometer Demo Kit (#28017) Acceleration, Tilt, and Rotation Measurement,” , September 2004. [15] J. Williams, “It’s All About Angles,” The Nuts and Volts of BASIC Stamps , Vol.3 pp. 253-268, December 2002. [16] 長高科技,ARM9 S3C2440嵌入式系統實作(ADS應用實驗篇),長高科技圖書,民國96年。 [17] 范聖一,ARM原理與嵌入式系統實作,學貫行銷股份有限公司,民國95年。 [18] 董勝源,單晶片MCS-51與C語言入門實習,宏友圖書,民國94年9月。 [19] 近藤科學,KHR-1旋回軸組立說明書」,近藤株式會社,September 2005。 [20] A. Albert, W. Gerth, ” Analytic Path Planning Algorithms for Bipedal Robots Without a Trunk,” Journal of Intelligent and Robotic Systems, Vol.36 pp.109-127,2003. [21] J.H. Park, ”Fuzzy-logic Zero-Moment-Point Trajectory Generation for Reduced Trunk Motion of Biped Robot,” Fuzzy Set and System, Vol.134 pp.189-203, 2003. [22] J.L. Van Leeuwen, P. Vink, C. W. Deegenaars and H. Flaterman, A. J. Verbout,”A Technique for Measuring Pelvic Rotations During Walking on a Treadmill,” Proc. of the IEEE Transactions on Biomedical Engineering, Vol.35 pp.485-488, 1988. [23] T. Ha, C.-H. Choi,” An Effective Trajectory Generation Method for Bipedal Walking,” Robotics and Autonomous Systems, Vol.55 pp.795-810, 2007. [24] L.-X. Wang,「A Course in Fuzzy Systems and Control」,Pearson Education Taiwan Ltd. , February 2005. [25] K.-C. Choi, H.-J. Lee and M. C. Lee, ”Fuzzy Posture Control for Biped Walking Robot Based on Force Sensor for ZMP,” Int. Joint Conf. on SICE-ICASE , 2006. [26] 孫宗瀛、楊英魁,「Fuzzy控制-理論、實作與應用」,全華科技圖書股份有限公司,民國84年9月。 [27] 凃志芳,「人形機器人分散式即時控制及步行分析」,台灣科技大學碩士論文,民國96年5月。
研究中使用之受控體是由日本KONDO公司所生產之KHR-1雙足式機器人再額外加裝轉向擴充模組,機身總共包含19個自由度,腳部12個、手部6個以及頭部1個,而控制器方面採用四顆AT89C4051單晶片與1顆S3C2440 ARM9微控制器互相串接而成,晶片彼此之間利用串列主從式多處理機通信進行傳輸。在感測器方面則選擇了可量測機身平衡度之元件,包含有加速度計與陀螺儀,並藉由外接之A/D轉換晶片轉換成數位訊號,藉以量測機身之傾斜角度與角速度。
在軌跡規劃方面採用了離線式(Off-Line)軌跡設計法,經由仿人類步態之分析下,設計出高速且可靠之擺動軌跡,再由矩陣式運動學求解轉軸之轉動角度,利用零力矩點(Zero Moment Point)公式檢驗其軌跡於正常行走下之穩定性,以及可達穩定之最高速軌跡。

The main purpose of this research is to design a stable walking trajectory for biped robot. It's also hope to produce a low cost servo controller and use high-level controller to reduce unpredictable error.
In this research, KHR-1 biped robot which is made by KONDO Inc. Japan, is used with an extra turning module, the robot contains nineteen degrees of freedom, consists of twelve servo motors on the legs, six servo motors on the hands, and one on the head. The controller of this robot is consisted of four Atmel AT89C4051 and one S3C2440 ARM9 microcontrollers. These microcontrollers communicate by the master-slave serial transmission. Gyros and accelerometers are used to body's measure the trunk's tilt angle and angular velocity for the balancing of the robot. The sensors' signals are capturing by an extra A/D convertor chip.
In trajectory planning it's then solved by human like walking is used to analysis to find a suitable trajectory and solve it by the off-line trajectory designed method. The rotation angle and mass point position are calculated by homogeneous transformation matrixes, then put it into the Zero-Moment-Point formula is used to check its stability and find its highest walking speed.
During the motion of robot walking, we use fuzzy controller is used to revise the abnormal tilt and improve unstable causing by unpredictable error.
其他識別: U0005-1708200903355900
Appears in Collections:機械工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.