Please use this identifier to cite or link to this item:
標題: 波音787航機之巡航推進效率分析
Cruise Propulsion Efficiency Analysis of Boeing 787 Airplane
作者: 歐陽亨
Ouyang, Heng
關鍵字: Boeing 787 Airplane;波音787航機;Cruise Propulsion Efficiency;巡航推進效率
出版社: 機械工程學系所
引用: [1]. Seinfeld H. J. and Pandis N. S., “Atmospheric chemistry and physics: from air pollution to climate change”, 2nd Edition, Wiley, 2006. [2]. [3]. [4]. [5]. 歐陽漪棻,“漫談航空動力系統”,航太工業通訊雜誌第五十七期,2005,9月。 [6]. [7]. [8]. [9]. [10]. [11]. [12]. [13]. [14]. Mattingly, D. J., “Elements of Gas Turbine Propulsion”, McGraw-Hill, 1996, pp.346-368, pp.392-398. [15]. Kroes, M. J. and Rardon, J. R., “Aircraft Basic Science”, 7th Edition, McGraw-Hill, 1993. [16]. 黃雨順編著,“飛機飛行學”, 初版,全華科技圖書股份有限公司出版,1999。 [17]. 黃嘉彥編著,“飛行的奧秘”,財團法人徐氏基金會出版,1996。 [18]. 黃子耀,“氣壓動力渦輪螺槳模型機之研發”,國立中興大學機械工程研究所碩士論文,2007。 [19]. [20]. [21]. [22]. 郭俊谷,“對衝式氣壓動力模型飛機之研發”,國立中興大學機械工程研究所碩士論文,2005。 [23]. 出射忠明編著,“現代軍機與民航機圖鑑”,萬里書店,香港,1995。 [24]. “The Jet Engine”, Rolls-Royce, 1996. [25]. 周濟平編著,“噴射發動機概論”,初版,中央圖書出版社,中華民國七十九年十月。 [26]. 夏樹仁編著,“飛行工程概論”,全華科技圖書股份有限公司出版,2003。 [27]. [28]. [29]. 吳忠慶,徐子圭,“航空器發動機介紹及推力增益研析”,航太工業通訊雜誌第五十七期,2005,9月。 [30]. Lee, H. J. and Huang, S. C., “On the Derivation Process of Reynolds Transport Equation”, The International Journal of Mechanical Engineering Education, Vol. 21, No. 1, 1993, pp. 49-53. [31]. 林栩,“U迴模式發射衛星運載火箭之推進優勢分析”,國立中興大學機械工程研究所碩士論文,2006。 [32]. 吳汶霖,“高速旗魚之推進策略分析”,國立中興大學機械工程研究所碩士論文,2007。 [33]. 袁廣麟,“衛星運載火箭之通化推進性能分析”,國立中興大學機械工程研究所碩士論文,2008。 [34]. Lee, H. J. and Chang, C. L., “Deriving the Generalized Power and Efficiency Equations for Jet Propulsion System”, JSME International Journal, 44, Nov, 2001, pp.658-667. [35]. Lee, H. J. and Lee, H. W., “Deriving the Generalized Rocket Kinetic Power Equations and Associated Propulsion Indexes”, JSME International Journal, Vol.42, No.1, 1999, pp.127-136. [36]. [37]. Anderson, D. J., “Fundamentals of Aerodynamics”, 4th Edition, McGraw-Hill, October 2005.
航空器的噴射推進系統發展至今運用最為廣泛的渦輪風扇發動機推力最高可達50噸,其推進效率也較早期的渦輪噴射引擎與低旁通比之渦輪風扇引擎大為提升。以目前原油每桶價格約60~100美元為例,導致航空燃油成本已佔航空公司營運收入約25%~40%,因此推進效率之提升自然成為現今飛機設計的重要課題。航機最佳長程巡航高度多落在同溫層邊緣(10至13公里之間),本文將探討預計明年即將推出的最新型波音787航機在巡航高度約12.2公里,巡航速度約0.85馬赫時的推進效率。本文系利用 李興軍近年提出的先進通化噴射推進公式體系,根據可獲得的機型資訊搭配勞斯萊斯公司之Trent 1000-D發動機資訊分析其巡航推進效率,作為未來航機研發與航空公司選擇機型的重要參考。此外並參考高海拔青藏鐵路提高客艙氧濃度之成功營運經驗,提出極富創意未來大幅降低航機氣動阻力的重要實證建議。

Through years of R&D, today the turbofan jet engine is extensively used as aircraft propulsion system with thrust up to 50 tonnes. Its generalized propulsive efficiency significantly overrides the earlier turbojet engines and other low bypass ratio turbofan engines. Currently the ever-changing crude oil prices ranging between 60 and 100 US $ per barrel make the cost of jet fuel accounted for about 25%~40% of the airline operating revenue. Therefore, the improvement for the generalized propulsive efficiency becomes an important issue in modern aircraft design. This thesis will explore the generalized propulsive efficiency for the upcoming latest Boeing 787 aircraft at cruising altitude ≈ 12.2 km around the lower boundary of the stratosphere and cruising speed ≈ 0.85 M. We will use the advanced jet propulsion concepts of Lee published in recent years, according to the available information of Rolls-Royce Trent 1000-D engine, we analyze the cruising propulsion efficiency of Boeing 787-8 airplane as an important reference for future aircraft R&D and airline purchase decision. Moreover, this thesis also proposes the innovative idea of raising oxygen concentration rate of cabin in order to fly at even higher altitude (referring the Qinghai-Tibet railway experience) to dramatically reduce the drag force and thus improve the overall propulsion efficiency of the aircraft in the future.
其他識別: U0005-1708200914143800
Appears in Collections:機械工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.