Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributor.advisorHungchen E. Yenen_US
dc.contributor.authorHo, Tsing-Fenen_US
dc.identifier.citation1. Hanahan, D. and R.A. Weinberg, The hallmarks of cancer. Cell, 2000. 100(1): p. 57-70. 2. Soto-Cerrato, V., et al., Mitochondria-mediated apoptosis operating irrespective of multidrug resistance in breast cancer cells by the anticancer agent prodigiosin. Biochem Pharmacol, 2004. 68(7): p. 1345-52. 3. Mortellaro, A., et al., New immunosuppressive drug PNU156804 blocks IL-2-dependent proliferation and NF-kappa B and AP-1 activation. J Immunol, 1999. 162(12): p. 7102-9. 4. Fesik, S.W., Promoting apoptosis as a strategy for cancer drug discovery. Nat Rev Cancer, 2005. 5(11): p. 876-85. 5. Khan, N., F. Afaq, and H. Mukhtar, Apoptosis by dietary factors: the suicide solution for delaying cancer growth. Carcinogenesis, 2007. 28(2): p. 233-9. 6. 行政院衛生署, 癌症死亡主因. 2006. 7. 乳癌研究委員會, T., 乳癌診斷與治療共識. 國家衛生研究院, 2004. 8. Huang, C.S., et al., Breast cancer risk associated with genotype polymorphism of the estrogen-metabolizing genes CYP17, CYP1A1, and COMT: a multigenic study on cancer susceptibility. Cancer Res, 1999. 59(19): p. 4870-5. 9. Huang, C.S., K.J. Chang, and C.Y. Shen, Breast cancer screening in Taiwan and China. Breast Dis, 2001. 13: p. 41-8. 10. Clinical practice guidelines in oncology. National Comprehensive Cancer Network, 2008. 2. 11. Shintani, T. and D.J. Klionsky, Autophagy in health and disease: a double-edged sword. Science, 2004. 306(5698): p. 990-5. 12. Frank, S.A., Genetic predisposition to cancer - insights from population genetics. Nat Rev Genet, 2004. 5(10): p. 764-72. 13. Berry, M.D., Glyceraldehyde-3-phosphate dehydrogenase as a target for small-molecule disease-modifying therapies in human neurodegenerative disorders. J Psychiatry Neurosci, 2004. 29(5): p. 337-45. 14. Reed, J.C., Bcl-2-family proteins and hematologic malignancies: history and future prospects. Blood, 2008. 111(7): p. 3322-30. 15. Reuter, C.W., M.A. Morgan, and L. Bergmann, Targeting the Ras signaling pathway: a rational, mechanism-based treatment for hematologic malignancies? Blood, 2000. 96(5): p. 1655-69. 16. Susin, S.A., et al., Bcl-2 inhibits the mitochondrial release of an apoptogenic protease. J Exp Med, 1996. 184(4): p. 1331-41. 17. Susin, S.A., et al., Molecular characterization of mitochondrial apoptosis-inducing factor. Nature, 1999. 397(6718): p. 441-6. 18. Bredesen, D.E., R.V. Rao, and P. Mehlen, Cell death in the nervous system. Nature, 2006. 443(7113): p. 796-802. 19. Gotoh, T. and M. Mori, Nitric oxide and endoplasmic reticulum stress. Arterioscler Thromb Vasc Biol, 2006. 26(7): p. 1439-46. 20. Cory, S. and J.M. Adams, The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer, 2002. 2(9): p. 647-56. 21. Yang, J., et al., Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science, 1997. 275(5303): p. 1129-32. 22. Kluck, R.M., et al., The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science, 1997. 275(5303): p. 1132-6. 23. Reed, J.C., Bcl-2 and the regulation of programmed cell death. J Cell Biol, 1994. 124(1-2): p. 1-6. 24. Merry, D.E. and S.J. Korsmeyer, Bcl-2 gene family in the nervous system. Annu Rev Neurosci, 1997. 20: p. 245-67. 25. Huang, J., et al., Global analysis of growth phase responsive gene expression and regulation of antibiotic biosynthetic pathways in Streptomyces coelicolor using DNA microarrays. Genes Dev, 2001. 15(23): p. 3183-92. 26. Youle, R.J., Cell biology. Cellular demolition and the rules of engagement. Science, 2007. 315(5813): p. 776-7. 27. Willis, S.N., et al., Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs, not Bax or Bak. Science, 2007. 315(5813): p. 856-9. 28. Li, H., et al., Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell, 1998. 94(4): p. 491-501. 29. Luo, X., et al., Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell, 1998. 94(4): p. 481-90. 30. Fennell, D.A., A. Chacko, and L. Mutti, BCL-2 family regulation by the 20S proteasome inhibitor bortezomib. Oncogene, 2008. 27(9): p. 1189-97. 31. Fennell, D.A. and A. Chacko, Exploiting BH3 only protein function for effective cancer therapy. Front Biosci, 2008. 13: p. 6682-92. 32. Eckelman, B.P., G.S. Salvesen, and F.L. Scott, Human inhibitor of apoptosis proteins: why XIAP is the black sheep of the family. EMBO Rep, 2006. 7(10): p. 988-94. 33. Lu, M., et al., XIAP induces NF-kappaB activation via the BIR1/TAB1 interaction and BIR1 dimerization. Mol Cell, 2007. 26(5): p. 689-702. 34. Altieri, D.C., The case for survivin as a regulator of microtubule dynamics and cell-death decisions. Curr Opin Cell Biol, 2006. 18(6): p. 609-15. 35. Tamm, I., et al., IAP-family protein survivin inhibits caspase activity and apoptosis induced by Fas (CD95), Bax, caspases, and anticancer drugs. Cancer Res, 1998. 58(23): p. 5315-20. 36. O''Connor, D.S., et al., Regulation of apoptosis at cell division by p34cdc2 phosphorylation of survivin. Proc Natl Acad Sci U S A, 2000. 97(24): p. 13103-7. 37. Fortugno, P., et al., Regulation of survivin function by Hsp90. Proc Natl Acad Sci U S A, 2003. 100(24): p. 13791-6. 38. Yamamoto, H., C.Y. Ngan, and M. Monden, Cancer cells survive with survivin. Cancer Sci, 2008. 39. Altieri, D.C., Survivin, cancer networks and pathway-directed drug discovery. Nat Rev Cancer, 2008. 8(1): p. 61-70. 40. Kuo, P.C., H.F. Liu, and J.I. Chao, Survivin and p53 modulate quercetin-induced cell growth inhibition and apoptosis in human lung carcinoma cells. J Biol Chem, 2004. 279(53): p. 55875-85. 41. Samuel, T., et al., cIAP1 Localizes to the nuclear compartment and modulates the cell cycle. Cancer Res, 2005. 65(1): p. 210-8. 42. Dohi, T., et al., An IAP-IAP complex inhibits apoptosis. J Biol Chem, 2004. 279(33): p. 34087-90. 43. Dohi, T., F. Xia, and D.C. Altieri, Compartmentalized phosphorylation of IAP by protein kinase A regulates cytoprotection. Mol Cell, 2007. 27(1): p. 17-28. 44. Hunter, A.M., E.C. LaCasse, and R.G. Korneluk, The inhibitors of apoptosis (IAPs) as cancer targets. Apoptosis, 2007. 12(9): p. 1543-68. 45. Schimmer, A.D., et al., Targeting XIAP for the treatment of malignancy. Cell Death Differ, 2006. 13(2): p. 179-88. 46. Furstner, A., Chemistry and biology of roseophilin and the prodigiosin alkaloids: a survey of the last 2500 years. Angew Chem Int Ed Engl, 2003. 42(31): p. 3582-603. 47. Perez-Tomas, R., et al., The prodigiosins, proapoptotic drugs with anticancer properties. Biochem Pharmacol, 2003. 66(8): p. 1447-52. 48. Williamson, N.R., et al., The biosynthesis and regulation of bacterial prodiginines. Nat Rev Microbiol, 2006. 4(12): p. 887-99. 49. Hopwood, D.A., Therapeutic treasures from the deep. Nat Chem Biol, 2007. 3(8): p. 457-8. 50. Chang, M.-Y., C.-L. Pai, and H.-P. Chen, Synthesis of streptorubin B core. Tetrahedron Letters, 2005. 46(45): p. 7705-7709. 51. 陳文盛, 線索--- 一位本土科學家的心路歷程. 2002. 52. Senior, K., Bacterial synthesisers to create libraries of anticancer drugs. The Lancet Oncology, 2006. 7(12): p. 969-969. 53. D''Alessio, R., et al., Synthesis and immunosuppressive activity of novel prodigiosin derivatives. J Med Chem, 2000. 43(13): p. 2557-65. 54. Campas, C., et al., Bcl-2 inhibitors induce apoptosis in chronic lymphocytic leukemia cells. Exp Hematol, 2006. 34(12): p. 1663-9. 55. Stanley, A.E., et al., Elucidation of the Streptomyces coelicolor pathway to 4-methoxy-2,2''-bipyrrole-5-carboxaldehyde, an intermediate in prodiginine biosynthesis. Chem Commun (Camb), 2006(38): p. 3981-3. 56. Mo, S., et al., Elucidation of the Streptomyces coelicolor pathway to 2-undecylpyrrole, a key intermediate in undecylprodiginine and streptorubin B biosynthesis. Chem Biol, 2008. 15(2): p. 137-48. 57. Wei, Y.H. and W.C. Chen, Enhanced production of prodigiosin-like pigment from Serratia marcescens SMdeltaR by medium improvement and oil-supplementation strategies. J Biosci Bioeng, 2005. 99(6): p. 616-22. 58. Wei, Y.H., W.J. Yu, and W.C. Chen, Enhanced undecylprodigiosin production from Serratia marcescens SS-1 by medium formulation and amino-acid supplementation. J Biosci Bioeng, 2005. 100(4): p. 466-71. 59. Tsuji, R.F., et al., Immunomodulating properties of prodigiosin 25-C, an antibiotic which preferentially suppresses induction of cytotoxic T cells. J Antibiot (Tokyo), 1992. 45(8): p. 1295-302. 60. Melvin, M.S., et al., Influence of the a-ring on the proton affinity and anticancer properties of the prodigiosins. Chem Res Toxicol, 2002. 15(5): p. 734-41. 61. La, J.Q., A.A. Michaelides, and R.A. Manderville, Tautomeric equilibria in phenolic A-ring derivatives of prodigiosin natural products. J Phys Chem B, 2007. 111(40): p. 11803-11. 62. Isaka, M., et al., Potent in vitro antimalarial activity of metacycloprodigiosin isolated from Streptomyces spectabilis BCC 4785. Antimicrob Agents Chemother, 2002. 46(4): p. 1112-3. 63. Nakamura, A., et al., Suppression of cytotoxic T cell induction in vivo by prodigiosin 25-C. Transplantation, 1989. 47(6): p. 1013-6. 64. Nakamura, A., et al., Selective suppression by prodigiosin of the mitogenic response of murine splenocytes. J Antibiot (Tokyo), 1986. 39(8): p. 1155-9. 65. Campas, C., et al., Prodigiosin induces apoptosis of B and T cells from B-cell chronic lymphocytic leukemia. Leukemia, 2003. 17(4): p. 746-50. 66. Llagostera, E., et al., Prodigiosin induces apoptosis by acting on mitochondria in human lung cancer cells. Ann N Y Acad Sci, 2003. 1010: p. 178-81. 67. Montaner, B. and R. Perez-Tomas, Prodigiosin induces caspase-9 and caspase-8 activation and cytochrome C release in Jurkat T cells. Ann N Y Acad Sci, 2002. 973: p. 246-9. 68. Montaner, B. and R. Perez-Tomas, Prodigiosin-induced apoptosis in human colon cancer cells. Life Sci, 2001. 68(17): p. 2025-36. 69. Montaner, B., et al., Prodigiosin from the supernatant of Serratia marcescens induces apoptosis in haematopoietic cancer cell lines. Br J Pharmacol, 2000. 131(3): p. 585-93. 70. Azuma, T., et al., Induction of apoptosis of activated murine splenic T cells by cycloprodigiosin hydrochloride, a novel immunosuppressant. Immunopharmacology, 2000. 46(1): p. 29-37. 71. Yamamoto, C., et al., Cycloprodigiosin hydrochloride, a new H(+)/Cl(-) symporter, induces apoptosis in human and rat hepatocellular cancer cell lines in vitro and inhibits the growth of hepatocellular carcinoma xenografts in nude mice. Hepatology, 1999. 30(4): p. 894-902. 72. Zhang, J., et al., Antimetastatic effect of prodigiosin through inhibition of tumor invasion. Biochem Pharmacol, 2005. 69(3): p. 407-14. 73. Montaner, B., et al., DNA interaction and dual topoisomerase I and II inhibition properties of the anti-tumor drug prodigiosin. Toxicol Sci, 2005. 85(2): p. 870-9. 74. Montaner, B. and R. Perez-Tomas, The prodigiosins: a new family of anticancer drugs. Curr Cancer Drug Targets, 2003. 3(1): p. 57-65. 75. Kataoka, T., et al., Prodigiosin 25-C uncouples vacuolar type H(+)-ATPase, inhibits vacuolar acidification and affects glycoprotein processing. FEBS Lett, 1995. 359(1): p. 53-9. 76. Ohkuma, S., et al., Prodigiosins uncouple lysosomal vacuolar-type ATPase through promotion of H+/Cl- symport. Biochem J, 1998. 334 ( Pt 3): p. 731-41. 77. Sato, T., et al., Prodigiosins as a new group of H+/Cl- symporters that uncouple proton translocators. J Biol Chem, 1998. 273(34): p. 21455-62. 78. Soto-Cerrato, V., et al., Prodigiosin induces the proapoptotic gene NAG-1 via glycogen synthase kinase-3beta activity in human breast cancer cells. Mol Cancer Ther, 2007. 6(1): p. 362-9. 79. Soto-Cerrato, V., et al., The anticancer agent prodigiosin induces p21WAF1/CIP1 expression via transforming growth factor-beta receptor pathway. Biochem Pharmacol, 2007. 74(9): p. 1340-9. 80. Castillo-Avila, W., et al., Non-apoptotic concentrations of prodigiosin (H+/Cl- symporter) inhibit the acidification of lysosomes and induce cell cycle blockage in colon cancer cells. Life Sci, 2005. 78(2): p. 121-7. 81. Perez-Tomas, R. and B. Montaner, Effects of the proapoptotic drug prodigiosin on cell cycle-related proteins in Jurkat T cells. Histol Histopathol, 2003. 18(2): p. 379-85. 82. Peng, X.H., et al., Down-regulation of inhibitor of apoptosis proteins by deguelin selectively induces apoptosis in breast cancer cells. Mol Pharmacol, 2007. 71(1): p. 101-11. 83. Yoshida, T., et al., Lipoxygenase inhibitors induce death receptor 5/TRAIL-R2 expression and sensitize malignant tumor cells to TRAIL-induced apoptosis. Cancer Sci, 2007. 98(9): p. 1417-23. 84. Yoshida, T., et al., Promoter structure and transcription initiation sites of the human death receptor 5/TRAIL-R2 gene. FEBS Lett, 2001. 507(3): p. 381-5. 85. Lin, Y.W., S.M. Chuang, and J.L. Yang, ERK1/2 achieves sustained activation by stimulating MAPK phosphatase-1 degradation via the ubiquitin-proteasome pathway. J Biol Chem, 2003. 278(24): p. 21534-41. 86. Decatris, M.P., S. Sundar, and K.J. O''Byrne, Platinum-based chemotherapy in metastatic breast cancer: current status. Cancer Treat Rev, 2004. 30(1): p. 53-81. 87. Galonek, H.L. and J.M. Hardwick, Upgrading the BCL-2 network. Nat Cell Biol, 2006. 8(12): p. 1317-9. 88. Nemoto, T., et al., Expression of IAP family proteins in esophageal cancer. Exp Mol Pathol, 2004. 76(3): p. 253-9. 89. Kleinberg, L., et al., Expression of inhibitor-of-apoptosis protein family members in malignant mesothelioma. Hum Pathol, 2007. 38(7): p. 986-94. 90. Certo, M., et al., Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell, 2006. 9(5): p. 351-65. 91. Han, H., et al., 15-Deoxy-delta 12,14-prostaglandin J2 (15d-PGJ 2) sensitizes human leukemic HL-60 cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis through Akt downregulation. Apoptosis, 2007. 12(11): p. 2101-14. 92. Dong, S., et al., Targeting 14-3-3 sensitizes native and mutant BCR-ABL to inhibition with U0126, rapamycin and Bcl-2 inhibitor GX15-070. Leukemia, 2008. 22(3): p. 572-7. 93. Li, J., J. Viallet, and E.B. Haura, A small molecule pan-Bcl-2 family inhibitor, GX15-070, induces apoptosis and enhances cisplatin-induced apoptosis in non-small cell lung cancer cells. Cancer Chemother Pharmacol, 2008. 61(3): p. 525-34. 94. Nguyen, M., et al., Small molecule obatoclax (GX15-070) antagonizes MCL-1 and overcomes MCL-1-mediated resistance to apoptosis. Proc Natl Acad Sci U S A, 2007. 104(49): p. 19512-7. 95. Perez-Galan, P., et al., The BH3-mimetic GX15-070 synergizes with bortezomib in mantle cell lymphoma by enhancing Noxa-mediated activation of Bak. Blood, 2007. 109(10): p. 4441-9. 96. Ho, T.F., et al., Undecylprodigiosin selectively induces apoptosis in human breast carcinoma cells independent of p53. Toxicol Appl Pharmacol, 2007. 225(3): p. 318-28. 97. Zaffaroni, N., et al., Expression of the anti-apoptotic gene survivin correlates with taxol resistance in human ovarian cancer. Cell Mol Life Sci, 2002. 59(8): p. 1406-12. 98. Rodel, F., et al., Survivin antisense oligonucleotides effectively radiosensitize colorectal cancer cells in both tissue culture and murine xenograft models. Int J Radiat Oncol Biol Phys, 2008. 71(1): p. 247-55. 99. Pyrko, P., et al., Downregulation of survivin expression and concomitant induction of apoptosis by celecoxib and its non-cyclooxygenase-2-inhibitory analog, dimethyl-celecoxib (DMC), in tumor cells in vitro and in vivo. Mol Cancer, 2006. 5: p. 19. 100. Lin, J., et al., Combination of cyclooxygenase-2 inhibitors and oxaliplatin increases the growth inhibition and death in human colon cancer cells. Biochem Pharmacol, 2005. 70(5): p. 658-67. 101. Deep, G., et al., Isosilybin B and isosilybin A inhibit growth, induce G1 arrest and cause apoptosis in human prostate cancer LNCaP and 22Rv1 cells. Carcinogenesis, 2007. 28(7): p. 1533-42.zh_TW
dc.description.abstractProdiginines 是一群化學構造上具有三個砒咯環的衍生物,多由鏈黴菌屬 (Streptomyces) 及鋸桿菌屬 (Serratia) 這類微生物所產生的紅色色素。Prodigiosin (PG) 與undecylprodigiosin (UP) 皆屬於prodiginines 這一類結構物。已有文獻證實 PG 確有抑癌作用,但 UP 的抑癌活性尚未揭示。本研究主要是探討 PG 與 UP 的抑癌活性與作用機制,我們以乳癌細胞株為生物研究模式,包括 BT-20、MCF-7、 MBA-MD-231、T47-D 四株乳癌細胞株,及一株正常的乳腺細胞株 (MCF-10A)。針對 UP 抑癌活性的研究,首先以 MTS assay 評測 UP 對乳癌細胞株活性之抑制現象。結果發現 UP 對乳癌細胞株有顯著的細胞毒殺作用,但在正常乳腺細胞株並無明顯作用,証實 UP 的細胞毒殺作用具有選擇性,而一般臨床常用之抗癌藥 cisplatin,卻無此選擇性。顯示 UP 是一極具潛力之抗癌藥。進一步由 TUNEL assay 及 Annexin V 染色,以流式細胞儀偵測,UP 確能導致細胞凋亡效應。另輔以 z-VAD.fmk 可證實, UP 所引起的細胞凋亡效應與 caspase 活化有關。由 Western blotting 的蛋白表現量可得, UP 處理後會抑制 BCL-xL、BCL-2、survivin、XIAP 表現,促進 BIM、Mcl-1s 表現。又以 RNA 干擾技術減少 MCF-7 細胞株之 p53 蛋白表現量,進行 MTS assay,獲知 UP 抑癌作用與 p53 無關。依目前研究結果推論,UP 可能透過抑制 XIAP、survivin 蛋白表現,達到活化 caspase 所致細胞凋亡作用。Prodiginines 成員中,關於 PG 的抗癌機制的研究最多,但IAP (inhibitor of apoptosis) 在 PG 所誘發的細胞凋亡效應所扮演的角色,尚未揭示。本篇研究證實 PG 可誘發人類乳癌細胞株的細胞凋亡作用,由 Western blotting 的蛋白表現量及即時定量 RT-PCR 結果,顯示 PG 抑制 survivin 及 XIAP 蛋白表現,不僅調控蛋白質轉譯的層次,而且也調控基因轉錄的層次。我們建立可以持續穩定表現 survivin 基因或 XIAP 基因的乳癌細胞株,會對PG 產生抗性,証實 survivin 與 XIAP 蛋白在 PG 對乳癌細胞的毒殺作用中的重要性。紫杉醇會抑制 XIAP 蛋白表現,卻促使 survivin 蛋白表現量增加,可能與抗性的產生有關。藉由螢火蟲冷光酶報導系統顯示 PG 會抑制 survivin 啟動子活性而抑制 survivin 基因表現。藉由 PG 抑制 survivin 基因表現的特性,期能發展有效的治療新方法。PG 與紫杉醇合併處理乳癌細胞後,由 MTS 檢測法及細胞群落形成能力檢測法,都可發現 PG 的確可增效紫杉醇對乳癌細胞的毒殺作用,但這種合併效應在穩定表現 survivin 基因的細胞株卻消失,證實 survivin 在 PG 與紫杉醇合併效應所扮演的重要性。zh_TW
dc.description.abstractProdiginine is a family of tripyrrole red pigments produced by a restricted group ofmicroorganisms, including some Streptomyces and Serratia strains, and characterized by a common pyrrolydipyrrolylmethene skeleton. Prodigiosin (PG) and undecylpridigiosin (UP) are the members of prodiginine. Human breast carcinoma cell lines BT-20, MCF-7, MDA-MB-231 and T47-D and one nonmalignant human breast epithelial cell line, MCF-10A, were to study on the anticancer effect and the underlying mechanisms of prodiginines. On the anticancer effect of UP, we found that UP exerted a potent cytotoxicity against all breast carcinoma cell lines in a dose- and time-dependent manner. In contrast, UP showed limited toxicity to MCF-10A cells, indicating UP''s cytotoxic effect is selective for malignant cells. UP''s cytotoxic effect was due to apoptosis, as confirmed by positive TUNEL signals, annexin V-binding, caspase-9 activation and PARP cleavage. Notably, UP-induced apoptosis was blocked by the pan-caspase inhibitor z-VAD.fmk, further indicating the involvement of caspase activity. Moreover, UP caused a marked decrease of the levels of antiapoptotic BCL-xL, Survivin and XIAP while enhancing the levels of proapoptotic BIK, BIM, MCL-1S and NOXA, consequently favoring induction of apoptosis. Additionally, we found that cells with functional p53 (MCF-7, T47-D) or mutant p53 (BT-20, MDA-MB-231) were both susceptible to UP''s cytotoxicity. Importantly, UP was able to induce apoptosis in MCF-7 cells with p53 knockdown by RNA interference, confirming the dispensability of p53 in UP-induced apoptosis. Overall, our results establish that UP induces p53-independent apoptosis in breast carcinoma cells with no marked toxicity to nonmalignant cells, raising the possibility of its use as a new chemotherapeutic drug for breast cancer irrespective of p53 status. On the other hand, we try to elucidate the role of IAP in PG's apoptotic effect. We found that PG down-regulates the levels of survivin and XIAP at both transcriptional and translational levels. Furthermore, breast cancer carcinoma cells gain resistance to PG-induced apoptosis via expression of the XIAP or survivin. The role of IAP including XIAP and survivin is important in PG-induced apoptosis. This information unveils molecular targets allowing efficient induction of apoptosis by PG, but also provides valuable insight to facilitate the design of combination effect of PG with other anticancer agents. Paclitaxel, a chemotherapeutic agent, down-regulates XIAP but up-regulates survivin in breast carcinoma cancer cell lines. We next addressed whether PG can enhanced the cytotoxicity effect of paclitaxel. In such a combination treatment, PG enhanced cell cytotoxicity compared to inducement by taxol alone was determined by MTS assay and colony-forming ability assay. Overexpression of survivin abrogated the combination effect with prodigiosin and paclitaxel in breast carcinoma cell lines. Therefore, we postulate that down-regulation of survivin by prodigiosin may be one of the key events involved in the combination effect.en_US
dc.description.tableofcontents壹、序論 一、 腫瘤的發生 (p.1) 二、 乳癌 (p.2) 三、 細胞凋亡 (Apoptosis) (p.4) 四、 BCL-2 家族蛋白 (The Bcl-2 family) (p.6) 五、 IAP 家族蛋白 (The IAP family) (p.8) 六、 Prodiginine 藥物發展史 (p.11) 七、 Prodiginine 藥物作用機制 (p.13) 貳、研究目的與策略 一、 天然抗癌藥物 UP 對於人類乳癌細胞株的抑癌作用之探討 (p.16) 二、 探討 IAP 在抗癌藥物 PG 誘發人類乳癌細胞株之細胞凋亡的重要性 (p.18) 参、實驗材料與方法 一、 細胞培養 (Cell culture) (p.20) 二、 藥物處理 (Drug treatment) (p.21) 三、 細胞增殖試驗 (Cell proliferation) (p.21) 四、 細胞存活試驗 (Cell viability assay) (p.22) 五、 蛋白質電泳與西方墨點法 (Western blotting) 1. 總蛋白之萃取 (Total protein extraction) (p.22) 2. 蛋白濃度定量分析 (protein quantification) (p.23) 3. 西方墨點法 (Western Blot) 與 SDS-PAGE (p.23) 六、 即時定量 RT-PCR法 (Real time RT-PCR) (p.25) 七、 冷光測定法 (Chemiluminescent reporter gene assasystem) 1. survivin 啟動子基因之選殖 (p.26) 2. survivin 啟動子基因之重組 (p.26) 八、 穩定表現標靶基因的細胞株 1. 基因選殖 (p.26) 2. 基因重組 (p.27) 3. 轉型作用 (Transformation) (p.27) 4. 煮沸法 (p.27) 5. G418 篩選劑量 (G418 killing curve) (p.28) 6. 基因轉化入乳癌細胞株 (p.29) 九、 流式細胞儀分析 1. 細胞週期檢測 (p.29) 2. 磷脂醯絲胺酸外翻偵測 (Annexin V-FITC) (p.30) 3. 去氧核糖核苷酸末端轉移酶介導的缺口末端標記法 (TUNEL) (p.31) 十、 細胞群落形成能力檢測法 (Clonogenic assay) (p.31) 十一、 統計 (Statistics) (p.32) 肆、結果 一、 天然抗癌藥物 UP 對於人類乳癌細胞株的抑癌作用之探討 1. UP 對於人類乳癌細胞株的選擇性抑癌作用之劑量效應 (p.33) 2. UP 對於人類乳癌細胞株的選擇性抑癌作用之時間效應 (p.33) 3. UP 誘發細胞凋亡作用需 caspase 參與 (p.34) 4. UP 改變 BCL-2 及 IAP 蛋白表現引發細胞凋亡 (p.34) 5. UP 誘發細胞凋亡作用與 p53 無關 (p.35) 二、 探討 IAP 在抗癌藥物 PG 誘發人類乳癌細胞株之細胞凋亡的重要性 1. PG 對於人類乳癌細胞株的選擇性凋亡作用之劑量效應 (p.36) 2. PG 抑制 survivin 及 XIAP 表現量 (p.36) 3. Survivin 或 XIAP 大量表現之乳癌細胞株建立及其 PG 感受性 (p.36) 4. 抗癌藥物---紫杉醇在有效劑量作用下會增加 IAP 蛋白表現量 (p.37) 5. 抗癌藥物---紫杉醇與 PG 合併使用的加成現象 (p.37) 6. Survivin 過量表現的乳癌細胞失去紫杉醇與 PG 合併使用的加成現象 (p.37) 伍、討論 一、 天然抗癌藥物 UP 對於人類乳癌細胞株的抑癌作用之探討 (p.39) 二、 探討 IAP 在抗癌藥物 PG 誘發人類乳癌細胞株之細胞凋亡的重要性 (p.40) 陸、圖表 圖一、比較 UP 與 Cisplatin 對於人類乳癌細胞株的選擇性抑癌作用之劑量效應 (p.43) 圖二、UP 對於人類乳癌細胞株的選擇性抑癌作用之時間效應 (p.44) 圖三、UP 誘發細胞凋亡作用需 caspase 參與 (p.45) 圖四、UP 改變 BCL-2 蛋白群及 IAP 蛋白群之蛋白表現量 (p.46) 圖五、UP 調控 BCL-2 蛋白推論圖 (p.47) 圖六、UP 誘發細胞凋亡作用與 p53 無關 (p.48) 圖七、綜合本篇研究所繪製之 UP 抑癌機制圖 (p.49) 圖八、PG 對於人類乳癌細胞株的凋亡作用之劑量效應 (p.50) 圖九、PG 抑制 survivin 及 XIAP 轉譯及轉錄作用 (p.51) 圖十、Survivin 或 XIAP 穩定表現之乳癌細胞株其 PG 感受性 (p.52) 圖十一、抗癌藥物---紫杉醇在有效劑量作用下會抑制 X IAP 卻增加 survivin 蛋白表現量 (p.53) 圖十二、抗癌藥物---紫杉醇與 PG 合併使用的加成現象 (p.54) 圖十三、Survivin 過量表現的乳癌細胞株失去紫杉醇與 PG 合併使用的加成現象 (p.55) 圖十四、紫杉醇與 PG 合併使用的加成現象之推論圖 (p.56) 柒、參考文獻 (p.57) 捌、附錄 一、研討會 1. 2007 年度生物醫學聯合學術年會 --- 海報展示 (p.63) 2. 2008 年度生物醫學聯合學術年會 --- 口頭論文報告 (p.64) 二、期刊論文 1. Toxicology and Applied Pharmacology 期刊 (p.65)zh_TW
dc.subjectBCL-2 proteinen_US
dc.subjectIAP proteinen_US
dc.subjectBCL-2 家族蛋白zh_TW
dc.subjectIAP 家族蛋白zh_TW
dc.titleProdiginines 抑癌活性與機制之探討zh_TW
dc.titleProdiginines: the anticancer effect and the underlying mechanismsen_US
dc.typeThesis and Dissertationzh_TW
item.fulltextno fulltext-
item.openairetypeThesis and Dissertation-
Appears in Collections:生命科學系所
Show simple item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.