Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/22686
標題: Rad23蛋白類泛素區域磷酸化對其與26S proteasome之結合及紫外光逆境下之生存力具負調控之作用
Phosphorylation of S47 within UbL domain of Rad23 down-regulated association with 26S proteasome and survival rate with UV light stress.
作者: 李彥德
Li, Yen-Te
關鍵字: Rad23 phosphorylation;磷酸化
出版社: 生命科學系所
引用: Abraham, R. T. (2001). Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev 15, 2177-2196. Appella, E., and Anderson, C. W. (2001). Post-translational modifications and activation of p53 by genotoxic stresses. Eur J Biochem 268, 2764-2772. Bertolaet, B. L., Clarke, D. J., Wolff, M., Watson, M. H., Henze, M., Divita, G., and Reed, S. I. (2001). UBA domains of DNA damage-inducible proteins interact with ubiquitin. Nat Struct Biol 8, 417-422. Brown, A. L., Lee, C. H., Schwarz, J. K., Mitiku, N., Piwnica-Worms, H., and Chung, J. H. (1999). A human Cds1-related kinase that functions downstream of ATM protein in the cellular response to DNA damage. Proc Natl Acad Sci U S A 96, 3745-3750. Catic, A., and Ploegh, H. L. (2005). Ubiquitin--conserved protein or selfish gene? Trends Biochem Sci 30, 600-604. Chaturvedi, P., Eng, W. K., Zhu, Y., Mattern, M. R., Mishra, R., Hurle, M. R., Zhang, X., Annan, R. S., Lu, Q., Faucette, L. F., et al. (1999). Mammalian Chk2 is a downstream effector of the ATM-dependent DNA damage checkpoint pathway. Oncogene 18, 4047-4054. Chen, L., and Madura, K. (2002). Rad23 promotes the targeting of proteolytic substrates to the proteasome. Mol Cell Biol 22, 4902-4913. Chen, L., and Madura, K. (2005). Increased proteasome activity, ubiquitin-conjugating enzymes, and eEF1A translation factor detected in breast cancer tissue. Cancer Res 65, 5599-5606. Chen, L., Shinde, U., Ortolan, T. G., and Madura, K. (2001). Ubiquitin-associated (UBA) domains in Rad23 bind ubiquitin and promote inhibition of multi-ubiquitin chain assembly. EMBO Rep 2, 933-938. Ciosk, R., Zachariae, W., Michaelis, C., Shevchenko, A., Mann, M., and Nasmyth, K. (1998). An ESP1/PDS1 complex regulates loss of sister chromatid cohesion at the metaphase to anaphase transition in yeast. Cell 93, 1067-1076. Clugston, C. K., McLaughlin, K., Kenny, M. K., and Brown, R. (1992). Binding of human single-stranded DNA binding protein to DNA damaged by the anticancer drug cis-diamminedichloroplatinum (II). Cancer Res 52, 6375-6379. Cohen-Fix, O., and Koshland, D. (1997). The anaphase inhibitor of Saccharomyces cerevisiae Pds1p is a target of the DNA damage checkpoint pathway. Proc Natl Acad Sci U S A 94, 14361-14366. Cohen-Fix, O., Peters, J. M., Kirschner, M. W., and Koshland, D. (1996). Anaphase initiation in Saccharomyces cerevisiae is controlled by the APC-dependent degradation of the anaphase inhibitor Pds1p. Genes Dev 10, 3081-3093. de Boer, J., and Hoeijmakers, J. H. (2000). Nucleotide excision repair and human syndromes. Carcinogenesis 21, 453-460. Deveraux, Q., Ustrell, V., Pickart, C., and Rechsteiner, M. (1994). A 26 S protease subunit that binds ubiquitin conjugates. J Biol Chem 269, 7059-7061. Diaz-Martinez, L. A., Kang, Y., Walters, K. J., and Clarke, D. J. (2006). Yeast UBL-UBA proteins have partially redundant functions in cell cycle control. Cell Div 1, 28. Dieckmann, T., Withers-Ward, E. S., Jarosinski, M. A., Liu, C. F., Chen, I. S., and Feigon, J. (1998). Structure of a human DNA repair protein UBA domain that interacts with HIV-1 Vpr. Nat Struct Biol 5, 1042-1047. Elder, R. T., Song, X. Q., Chen, M., Hopkins, K. M., Lieberman, H. B., and Zhao, Y. (2002). Involvement of rhp23, a Schizosaccharomyces pombe homolog of the human HHR23A and Saccharomyces cerevisiae RAD23 nucleotide excision repair genes, in cell cycle control and protein ubiquitination. Nucleic Acids Res 30, 581-591. Elsasser, S., Gali, R. R., Schwickart, M., Larsen, C. N., Leggett, D. S., Muller, B., Feng, M. T., Tubing, F., Dittmar, G. A., and Finley, D. (2002). Proteasome subunit Rpn1 binds ubiquitin-like protein domains. Nat Cell Biol 4, 725-730. Finley, D., Sadis, S., Monia, B. P., Boucher, P., Ecker, D. J., Crooke, S. T., and Chau, V. (1994). Inhibition of proteolysis and cell cycle progression in a multiubiquitination-deficient yeast mutant. Mol Cell Biol 14, 5501-5509. Gillette, T. G., Huang, W., Russell, S. J., Reed, S. H., Johnston, S. A., and Friedberg, E. C. (2001). The 19S complex of the proteasome regulates nucleotide excision repair in yeast. Genes Dev 15, 1528-1539. Glickman, M. H., Rubin, D. M., Coux, O., Wefes, I., Pfeifer, G., Cjeka, Z., Baumeister, W., Fried, V. A., and Finley, D. (1998). A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3. Cell 94, 615-623. Gragerov, A., Kino, T., Ilyina-Gragerova, G., Chrousos, G. P., and Pavlakis, G. N. (1998). HHR23A, the human homologue of the yeast repair protein RAD23, interacts specifically with Vpr protein and prevents cell cycle arrest but not the transcriptional effects of Vpr. Virology 245, 323-330. Groll, M., Koguchi, Y., Huber, R., and Kohno, J. (2001). Crystal structure of the 20 S proteasome:TMC-95A complex: a non-covalent proteasome inhibitor. J Mol Biol 311, 543-548. Guacci, V., Koshland, D., and Strunnikov, A. (1997). A direct link between sister chromatid cohesion and chromosome condensation revealed through the analysis of MCD1 in S. cerevisiae. Cell 91, 47-57. Guzder, S. N., Habraken, Y., Sung, P., Prakash, L., and Prakash, S. (1995). Reconstitution of yeast nucleotide excision repair with purified Rad proteins, replication protein A, and transcription factor TFIIH. J Biol Chem 270, 12973-12976. Guzder, S. N., Sung, P., Prakash, L., and Prakash, S. (1998). Affinity of yeast nucleotide excision repair factor 2, consisting of the Rad4 and Rad23 proteins, for ultraviolet damaged DNA. J Biol Chem 273, 31541-31546. Haglund, K., Di Fiore, P. P., and Dikic, I. (2003). Distinct monoubiquitin signals in receptor endocytosis. Trends Biochem Sci 28, 598-603. Heessen, S., Masucci, M. G., and Dantuma, N. P. (2005). The UBA2 domain functions as an intrinsic stabilization signal that protects Rad23 from proteasomal degradation. Mol Cell 18, 225-235. Hershko, A., and Ciechanover, A. (1998). The ubiquitin system. Annu Rev Biochem 67, 425-479. Hiyama, H., Yokoi, M., Masutani, C., Sugasawa, K., Maekawa, T., Tanaka, K., Hoeijmakers, J. H., and Hanaoka, F. (1999). Interaction of hHR23 with S5a. The ubiquitin-like domain of hHR23 mediates interaction with S5a subunit of 26 S proteasome. J Biol Chem 274, 28019-28025. Hoch, J., Lang, S. M., Weeger, M., Stahl-Hennig, C., Coulibaly, C., Dittmer, U., Hunsmann, G., Fuchs, D., Muller, J., Sopper, S., and et al. (1995). vpr deletion mutant of simian immunodeficiency virus induces AIDS in rhesus monkeys. J Virol 69, 4807-4813. Isaksson, A., Musti, A. M., and Bohmann, D. (1996). Ubiquitin in signal transduction and cell transformation. Biochim Biophys Acta 1288, F21-29. Jin, L., Williamson, A., Banerjee, S., Philipp, I., and Rape, M. (2008). Mechanism of ubiquitin-chain formation by the human anaphase-promoting complex. Cell 133, 653-665. Kaur, M., Pop, M., Shi, D., Brignone, C., and Grossman, S. R. (2007). hHR23B is required for genotoxic-specific activation of p53 and apoptosis. Oncogene 26, 1231-1237. Kim, I., Ahn, J., Liu, C., Tanabe, K., Apodaca, J., Suzuki, T., and Rao, H. (2006). The Png1-Rad23 complex regulates glycoprotein turnover. J Cell Biol 172, 211-219. Lang, S. M., Weeger, M., Stahl-Hennig, C., Coulibaly, C., Hunsmann, G., Muller, J., Muller-Hermelink, H., Fuchs, D., Wachter, H., Daniel, M. M., and et al. (1993). Importance of vpr for infection of rhesus monkeys with simian immunodeficiency virus. J Virol 67, 902-912. Li, L., Lu, X., Peterson, C., and Legerski, R. (1997). XPC interacts with both HHR23B and HHR23A in vivo. Mutat Res 383, 197-203. Lommel, L., Ortolan, T., Chen, L., Madura, K., and Sweder, K. S. (2002). Proteolysis of a nucleotide excision repair protein by the 26 S proteasome. Curr Genet 42, 9-20. Masutani, C., Sugasawa, K., Yanagisawa, J., Sonoyama, T., Ui, M., Enomoto, T., Takio, K., Tanaka, K., van der Spek, P. J., Bootsma, D., and et al. (1994). Purification and cloning of a nucleotide excision repair complex involving the xeroderma pigmentosum group C protein and a human homologue of yeast RAD23. Embo J 13, 1831-1843. Matsuoka, S., Huang, M., and Elledge, S. J. (1998). Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science 282, 1893-1897. Miao, F., Bouziane, M., Dammann, R., Masutani, C., Hanaoka, F., Pfeifer, G., and O''Connor, T. R. (2000). 3-Methyladenine-DNA glycosylase (MPG protein) interacts with human RAD23 proteins. J Biol Chem 275, 28433-28438. Michaelis, C., Ciosk, R., and Nasmyth, K. (1997). Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell 91, 35-45. Mu, D., Hsu, D. S., and Sancar, A. (1996). Reaction mechanism of human DNA repair excision nuclease. J Biol Chem 271, 8285-8294. Murakami, H., and Okayama, H. (1995). A kinase from fission yeast responsible for blocking mitosis in S phase. Nature 374, 817-819. Nandi, D., Tahiliani, P., Kumar, A., and Chandu, D. (2006). The ubiquitin-proteasome system. J Biosci 31, 137-155. O''Donovan, A., Davies, A. A., Moggs, J. G., West, S. C., and Wood, R. D. (1994). XPG endonuclease makes the 3'' incision in human DNA nucleotide excision repair. Nature 371, 432-435. Ogrunc, M., Becker, D. F., Ragsdale, S. W., and Sancar, A. (1998). Nucleotide excision repair in the third kingdom. J Bacteriol 180, 5796-5798. Ortolan, T. G., Chen, L., Tongaonkar, P., and Madura, K. (2004). Rad23 stabilizes Rad4 from degradation by the Ub/proteasome pathway. Nucleic Acids Res 32, 6490-6500. Ortolan, T. G., Tongaonkar, P., Lambertson, D., Chen, L., Schauber, C., and Madura, K. (2000). The DNA repair protein rad23 is a negative regulator of multi-ubiquitin chain assembly. Nat Cell Biol 2, 601-608. Ou, C. Y., Pi, H., and Chien, C. T. (2003). Control of protein degradation by E3 ubiquitin ligases in Drosophila eye development. Trends Genet 19, 382-389. Raasi, S., and Pickart, C. M. (2003). Rad23 ubiquitin-associated domains (UBA) inhibit 26 S proteasome-catalyzed proteolysis by sequestering lysine 48-linked polyubiquitin chains. J Biol Chem 278, 8951-8959. Rubin, D. M., and Finley, D. (1995). Proteolysis. The proteasome: a protein-degrading organelle? Curr Biol 5, 854-858. Russell, S. J., Reed, S. H., Huang, W., Friedberg, E. C., and Johnston, S. A. (1999). The 19S regulatory complex of the proteasome functions independently of proteolysis in nucleotide excision repair. Mol Cell 3, 687-695. Saeki, Y., Sone, T., Toh-e, A., and Yokosawa, H. (2002). Identification of ubiquitin-like protein-binding subunits of the 26S proteasome. Biochem Biophys Res Commun 296, 813-819. Sasaki, T., Funakoshi, M., Endicott, J. A., and Kobayashi, H. (2005). Budding yeast Dsk2 protein forms a homodimer via its C-terminal UBA domain. Biochem Biophys Res Commun 336, 530-535. Schauber, C., Chen, L., Tongaonkar, P., Vega, I., Lambertson, D., Potts, W., and Madura, K. (1998). Rad23 links DNA repair to the ubiquitin/proteasome pathway. Nature 391, 715-718. Shiloh, Y. (2001). ATM and ATR: networking cellular responses to DNA damage. Curr Opin Genet Dev 11, 71-77. Suzuki, T., Park, H., Kwofie, M. A., and Lennarz, W. J. (2001). Rad23 provides a link between the Png1 deglycosylating enzyme and the 26 S proteasome in yeast. J Biol Chem 276, 21601-21607. Tongaonkar, P., and Madura, K. (1998). Reconstituting ubiquitination reactions with affinity-purified components and 32P-ubiquitin. Anal Biochem 260, 135-141. Ulrich, H. D., and Jentsch, S. (2000). Two RING finger proteins mediate cooperation between ubiquitin-conjugating enzymes in DNA repair. Embo J 19, 3388-3397. Voges, D., Zwickl, P., and Baumeister, W. (1999). The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu Rev Biochem 68, 1015-1068. Walters, K. J., Lech, P. J., Goh, A. M., Wang, Q., and Howley, P. M. (2003). DNA-repair protein hHR23a alters its protein structure upon binding proteasomal subunit S5a. Proc Natl Acad Sci U S A 100, 12694-12699. Wang, C., Deng, L., Hong, M., Akkaraju, G. R., Inoue, J., and Chen, Z. J. (2001). TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412, 346-351. Wang, Z., Wei, S., Reed, S. H., Wu, X., Svejstrup, J. Q., Feaver, W. J., Kornberg, R. D., and Friedberg, E. C. (1997). The RAD7, RAD16, and RAD23 genes of Saccharomyces cerevisiae: requirement for transcription-independent nucleotide excision repair in vitro and interactions between the gene products. Mol Cell Biol 17, 635-643. Wang, Z., Wu, X., and Friedberg, E. C. (1993). Nucleotide-excision repair of DNA in cell-free extracts of the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 90, 4907-4911. Watkins, J. F., Sung, P., Prakash, L., and Prakash, S. (1993). The Saccharomyces cerevisiae DNA repair gene RAD23 encodes a nuclear protein containing a ubiquitin-like domain required for biological function. Mol Cell Biol 13, 7757-7765. Wenzel, T., and Baumeister, W. (1995). Conformational constraints in protein degradation by the 20S proteasome. Nat Struct Biol 2, 199-204. Wilkinson, C. R., Seeger, M., Hartmann-Petersen, R., Stone, M., Wallace, M., Semple, C., and Gordon, C. (2001). Proteins containing the UBA domain are able to bind to multi-ubiquitin chains. Nat Cell Biol 3, 939-943. Withers-Ward, E. S., Jowett, J. B., Stewart, S. A., Xie, Y. M., Garfinkel, A., Shibagaki, Y., Chow, S. A., Shah, N., Hanaoka, F., Sawitz, D. G., et al. (1997). Human immunodeficiency virus type 1 Vpr interacts with HHR23A, a cellular protein implicated in nucleotide excision DNA repair. J Virol 71, 9732-9742. Xie, Z., Liu, S., Zhang, Y., and Wang, Z. (2004). Roles of Rad23 protein in yeast nucleotide excision repair. Nucleic Acids Res 32, 5981-5990. Yamamoto, A., Guacci, V., and Koshland, D. (1996a). Pds1p is required for faithful execution of anaphase in the yeast, Saccharomyces cerevisiae. J Cell Biol 133, 85-97. Yamamoto, A., Guacci, V., and Koshland, D. (1996b). Pds1p, an inhibitor of anaphase in budding yeast, plays a critical role in the APC and checkpoint pathway(s). J Cell Biol 133, 99-110. Yamao, F. (1993). [Cell cycle regulation by ubiquitin system]. Tanpakushitsu Kakusan Koso 38, 1527-1530. Zhao, Y., Cao, J., O''Gorman, M. R., Yu, M., and Yogev, R. (1996). Effect of human immunodeficiency virus type 1 protein R (vpr) gene expression on basic cellular function of fission yeast Schizosaccharomyces pombe. J Virol 70, 5821-5826.
摘要: 
Rad23為在物種間具有高度保留之蛋白,其具有多種功能,主要參與在核酸修補機制及蛋白質降解過程中。然而Rad23訊息傳導所調控之功能仍未清楚。在我們實驗室之前已知Rad23能在活體內被磷酸化。為了研究Rad23磷酸化所調控為何,我們利用了活體外激酶分析及免疫沈澱法證明了Rad23上多個位置能被Kin28及Rad53磷酸化。我們所突變之Rad23蛋白並不影響Rad23的雙體結合,然而我們發現當Rad23之Serine47位置模擬磷酸化 (S47E) 時,此時Rad23與26S proteasome之結合及泛素鍵 (ubiquitin chain) 結合能力均有下降之情形。此外,S47E及S94A的突變也會減低Rad23與Rad4之結合性。我們也發現S47E會降低Rad23對26S proteasome活性之貢獻。而在生理功能上,S47E增加了酵母菌對紫外光及化學物質之感受性。由結果我們推測,Rad23之Serine 47位置磷酸化時,可能對Rad23與26S proteasome之結合及紫外光逆境生存力進行負調控。然而,S47磷酸化之機制能需進一步研究。

Rad23 was involved in multiple functions, such as DNA repair system and ubiquitin-proteasome system. Although Rad23 was highly conserved in various species, the function regulated by signaling of Rad23 was unclear. In our lab previous data, we determined Rad23 was phosphorylated in vivo. To investigate the regulation was controlled with phosphorylated Rad23, in vitro kinase assay and immunoprepicitations were used to examine multiple positions of Rad23 were phosphrylated by Rad53 or Kin28. Rad23 mutants did not affect homo-dimerization of Rad23 itself. However, S47E mutant significantly reduced interaction with 26S subunits and multi-ubiquitin chain binding ability. In addition, S94A decreased association with Rad4 slightly. S47E also reduced contribution of Rad23 on 26S proteasome activity. In bio-function analysis, S47E increased UV light sensitivity. Based on results showed, we suggested phosphorylation of S47 within UbL domain of Rad23 might down-regulate association with 26S proteasome and survival rate with UV light stress. However, the mechanism of phosphorylated S47 would still be investigated.
URI: http://hdl.handle.net/11455/22686
其他識別: U0005-1701200904291600
Appears in Collections:生命科學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.