Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2270
標題: 矽鍺磊晶薄膜的材料性質及矽鍺奈米結構的製作之研究
Research on Material Properties of SiGe Epitaxial Thin Film and Fabrication of SiGe Nanostructures
作者: 張原銘
Chang, Yuan-Ming
關鍵字: SiGe;矽鍺;thin film;annealing;photoluminescence;SQBNs;SONs;薄膜;退火;光致螢光;類蜂窩奈米結構;自我排列奈米網格
出版社: 機械工程學系所
引用: [1] D. Z. Peng, T. C. Chang, P. S. Shih, H. W. Zan, T. Y. Huang, C. Y. Chang, and P. T. Liu,”Polycrystalline silicon thin-film transistor with self-aligned SiGe raised source/drain,” Appl. Phys. Lett. 81 (2002) 4763. [2] M. Mitsui, K. Arimoto, J. Yamanaka, Kiyokazu, K. Sawano, and Y. Shiraki,” Influence of Ge atoms on mobility and junction properties of thin-film transistors fabricated on solid-phase crystallized poly-SiGe,” Appl. Phys. Lett. 89 (2006) 192102. [3] V. D. Juncu, I. Kallfass, R. Sloan, and J. V. Hatfield, ”Behaviour of logic gates fabricated on Si/SiGe MODFET technology”, Electronics Lett., 40 (2004) 772. [4] M. J. Rack, T. J. Thornton, D. K. Ferry, J. Huffman, and R. Westhoff, ”Strained Si/SiGe quantum well MODFETs for cryogenic ciruit applications,” Solid-State Electronics 45 (2001) 1199. [5] J. Fu, and K. Bach, ”Characterization of neutral base recombination for SiGe HBTs,” IEEE Trans. Electron Devices 53 (2006) 844. [6] S. H. Olsen, P. Dobrosz, E. Escobedo-Cousin, S. J. Bull, and A. G. O''Neill, ” Mobility-limiting mechanisms in single and dual channel strained Si/SiGe MOSFETs,” Mater. Sci. Eng. B 124 (2005) 107. [7] K. Washio, E. Ohue, K. Oda, R. Hayami, M.Tanabe, H. Shimamoto, T. Masuda, K. Ohhata, and M. Kondo, ”Self-aligned selective-epitaxial-growth SiGe HBTs: process, device, and ICs,” Thin Solid Films 369 (2000) 352. [8] M. Dion, D. C. Houghton, N. L. Rowell, D. D. Perovic, G. C. Aers, S. J. Rolfe, G. I. Sproule, and J. R. Phillips, ”Structural characterization of a UHV/CVD-grown SiGe HBT with graded base,” Thin Solid Films 321(1998) 167. [9] Y. H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, ”Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nat. Lett. 437 (2005) 1334. [10] S. W. Lee, H. C. Chen, L. J. Chen, Y. H. Peng, C. H. Kuan, and H. H. Cheng, ” Effects of low-temperature Si buffer layer thickness on the growth of SiGe by molecular beam epitaxy,” J. Appl. Phys. 92 (2002) 6880. [11] S. R. Sheng, M. Dion, and N. L. Rowell, “Growth and characterization of ultrahigh vacuum/chemical vapor deposition SiGe epitaxial layers on bulk single-crystal SiGe and Si substrates,” J. Vac. Sci. Technol. A 20 (2002) 1120. [12] H. Watakabe, T. Sameshima, H. Kanno, T. Sadoh, and M. Miyao, ”Electrical and structural properties of poly-SiGe film formed by pulsed-laser annealing,” J. Appl. Phys. 95 (2004) 6457. [13] M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science 321 (2008) 226. [14] T. Buonassisi, A. A. Istratov, M. A. Marcus, B. Lai, Z. Cai, S. M. Heald, and E. R. Weber, “Engineering metal-impurity nanodefects for low-cost solar cells,” Nat. Mater. 4 (2005) 676. [15] Y. C. Lee, C. F. Huang, J. Y. Chang, and M. L. Wu, “Enhanced light trapping based on guided mode resonance effect for thin-film silicon solar cells with two filling-factor gratings,” Opt. Express 16 (2008)7969. [16] S. Fahr, C. Ulbrich, T. Kirchartz, U. Rau, C. Rockstuhl, and F. Lederer, “Rugate filter for light-trapping in solar cells,” Opt. Express 16 (2008) 9332. [17] M. L. Kuo, D. J. Poxson, Y. S. Kim, F. W. Mont, J. K. Kim, E. F. Schubert, and S. Y. Lin,” Realization of a near-perfect antireflection coating for silicon solar energy utilization,” Opt. Lett. 33 (2008) 2527. [18] M. Agrawal and P. Peumans, “Broadband optical absorption enhancement through coherent light trapping in thin-film photovoltaic cells,” Opt. Express 16 (2008) 5385. [19] R. Bates, S. A. Lynch, D. J. Paul, Z. Ikonic, R. W. Kelsall, P. Harrison, S. L. Liew, D. J. Norris, and A. G. Cullis, "JInterwell intersubband electroluminescence from Si/SiGe quantum cascade emitters," Appl. Phys. Lett. 83 (2003) 4092. [20] Z. H. Lu, D. J. Lockwood, and J. M. Baribeau, “Quantum confinement and light emission in SiO2/Si superlattices,” Nat. Lett. 378 (1995) 258. [21] J. Tersoff, and F. K. LeGoues, “Competing relaxation mechanisms in strained layers,” Phys. Rev. Lett. 72 (1994) 3570. [22] K. Sawano, S. Koh, Y. Shiraki, Y. Ozawa, T. Hattori, J. Yamanaka, K. Suzuki, K Arimoto, K. Nakagawa, and N. Usami, “Fabrication of high-quality strain-relaxed thin SiGe layers on ion-implanted Si substrates,” Appl. Phys. Lett. 85 (2004) 2514. [23] B. S. Meyerson, ”Low-temperature silicon epitaxy by ultrahigh vacuum/chemical vapor deposition,” Appl. Phys. Lett. 48 (1986) 797. [24] K. Tiefenthaler and W. Lukosz, “ Integrated optical switches and gas sensors,” Opt. Lett. 10 (1984) 137. [25] S. R. Stiffler, J. H. Comfort, C. L. Stank, D. L. Harame, E. de Freart, and B. S. Meyerson, “The thermal stability of SiGe films deposited by ultrahigh-vacuum chemical vapor deposition,” J. Appl. Phys. 70 (1991) 1416. [26] T. H. Loh, H. S. Nguyen, C. H. Tung, A. D. Trigg, and G. Q. Lo, N. Balasubramanian, D. L. Kwong, S. Tripathy, ”Ultrathin low temperature SiGe buffer for the growth of high quality Ge epilayer on Si (100) by ultrahigh vacuum chemical vapor deposition,” Appl. Phys. Lett. 90 (2007) 92108. [27] M. Halbwax, D. Bouchier, V. Yam, D. Debarre, L.H. Nguyen, Y. Zheng,P. Rosner, M. Benamara, H. P. Strunk, and C. Clerc, ”Kinetics of Ge growth at low temperature on Si (001) by ultrahigh vacuum chemical vapor deposition,” J. Appl. Phys. 97 (2005) 64907. [28] Z. B. Zhao, J. Hershberger, S. M. Yalisove, and J. C. Bilello, “Determination of residual stress in thin films: a comparative study of X-ray topography versus laser curvature method,” Thin Solid Films 415 (2002) 21. [29] D. C. Houghton, ”Strain relaxation kinetics in Si1-xGex/Si heterostructures,” J. Appl. Phys. 70 (1991) 2136. [30] A. Sakai, K. Sugimoto, T. Yamamoto, M. Okada, H. Ikeda, Y. Yasuda, and S. Zaima, ”Reduction of threading dislocation density in SiGe layers on Si (001) using a two-step strain-relaxation procedure,” Appl. Phys. Lett. 79 (2001) 3398. [31] S. Zheng, M. Kawashima, M. Mori, T. Tambo, and C. Tatsuyama, “Interdiffusion at Si/SiGe interface analyzed by high-resolution X-ray diffraction,” Thin Solid Films 508 (2006) 156. [32] S. Zheng, M. Mori, T. Tambo, and C. Tatsuyama, “The structural deformations in the Si/SiGe system induced by thermal annealing,” J. Mater. Sci. 42 (2007) 5312. [33] J. Cai, P. M. Mooney, S. H. Christiansen, H. Chen, J. O. Chu, and J. A. Ott, “Strain relaxation and threading dislocation density in helium-implanted and annealed Si1-xGex/Si(100) heterostructures,” J. Appl. Phys. 95 (2004) 5347. [34] X. Xu, H. Kweh, Z. Zhang, Z. Liu, W. Zhou, W. Zhang, and P. Qian, “Thin strain-relaxed SiGe grown by ultrahigh vacuum chemical vapor deposition,” Appl. Surf. Sci. 252 (2006) 7594. [35] W. Tang, T. Shen, K. Xu, “Hardness and elastic modulus of Au/NiCr/Ta multilayers on Al2O3 substrate by nanoindentation continuous stiffness measurement technique,” Thin Solid Films 485 (2005) 72. [36] M.T. Kim, “Influence of substrates on the elastic reaction of films for the microindentation tests,” Thin Solid Films 283 (1996) 12. [37] J. A. Jacquez, and H. F. Kuppenheim, “Theory of the integrating sphere,” J. Opt. Soc. Am. 45 (1955) 460. [38] J. Shieh, C. H. Lin, and M. C. Yang, “Plasma nanofabrications and antireflection applications,” J. Phys. D: Appl. Phys. 40 (2007) 2242. [39] S. J. Chang, Y. Z. Juang, D. K. Nayak, and Y. Shiraki, ”Reactive ion etching of Si/SiGe in CF4/Ar and Cl2/BCl3/Ar discharges,” Mater. Chem. Phys. 60 (1999) 22. [40] Y. H. Xie, S. B. Samavedam, M. Bulsara, T. A. Langdo, and E. A. Fitzgerald, “Relaxed template for fabricating regularly distributed quantum dot arrays,” Appl. Phys. Lett. 71 (1997) 3567. [41] E. A. Fitzgerald, Y. H. Xie, D. Monroe, P. J. Silverman, J. M. Kuo, A. R. Kortan, F. A. Thiel, and B. E. Weir, “Relaxed GexSi1-x structures for III-V integration with Si and high mobility two-dimensional electron gases in Si,” J. Vac. Sci. Technol. B 10 (1992) 1807. [42] J. Tersoff, F.K. LeGoues, “Competing relaxation Mechanisms in strained layers,” Phys. Rev. Lett. 72 (1994) 3570. [43] M. A. Lutz, R. M. Feenstra, F. K. LeGoues, P. M. Mooney, and J. O. Chu, “Influence of misfit dislocations on the surface morphology of Si1-xGex films,” Appl. Phys. Lett. 66 (1995) 724. [44] T. Spila, P. Desjardins, J. D. Gall, R. D. Twesten, and J. E. Greene, “Effect of steady-state hydrogen coverage on the evolution of crosshatch morphology during Si1-xGex/Si (001) growth from hydride precursors,” J. Appl. Phys. 93 (2003) 1918. [45] C. Lee, S.Y. Bae, S. Mohrab, and H. Manohara, “A novel silicon nanotips antireflection surface for the micro sun sensor,” Nano Lett. 5 (2005) 2438. [46] Y. Nishimoto, K. Namga, “Investigation of texturization for crystalline silicon solar cells with sodium carbonate solutions,” Sol. Energy Mater. Sol. Cells 61 (2000) 393. [47] T. Minemoto, M. Murozonz, Y. Yamahuchi, H. Takakura, and Y. Hamayaka, “Novel deposition method of anti-reflective coating for spherical silicon solar cells,” Sol. Energy Mater. Sol. Cells 90 (2006) 2995. [48] J. A. Floro, G. A. Lucadamo, E. Chason, L. B. Freund, M. Sinclair, R. D. Twesten, and R. Q. Hwang,” SiGe island shape transitions induced by elastic repulsion,” Phys. Rev. Lett. 80 (1998) 4717. [49] J. A. Floro, E. Chason, R. D. Twesten, R. Q. Hwang, and L. B. Freund,” SiGe coherent islanding and stress relaxation in the high mobility regime,” Phys. Rev. Lett. 79 (1997) 3946. [50] C. Zhao, P. R. Lefebvre, and E.A. Irene,” A spectroscopic immersion ellipsometry study of SiO2-Si interface roughness for electron cyclotron resonance plasma and thermally oxidized Si surfaces,” Thin Solid Films 313 (1998) 286. [51] S. Dhara, C. Y. Lu, K. G. M. Nair, K. HChen, C. P. Chen, Y. F. Huang, C. David, L. C. Chen and B. Raj, “Mechanism of bright red emission in Si nanoclusters,” Nanotechnology 19 (2008) 395401. [52] M. Zhu, Y. Han, R. B. Wehrspohn, C. Godet, R. Etemadi, and D. Ballutaud,” The origin of visible photoluminescence from silicon oxide thin films prepared by dual-plasma chemical vapor deposition,” J. Appl. Phys. 83 (1998) 5386. [53] C. Itoh, T. Suzuki, and N. Itoh,” Luminescence and defect formation in undensified amoorphous SiO2,” Phys. Rev. B 41 (1990) 3794. [54] Q. H. Wang, T. D. Corrigan, J. Y. Dai, R. P. H. Chang, and A. R. Krauss, “Field emission from nanotube bundle emitters at low fields,” Appl. Phys. Lett. 70 (1997) 3308. [55] Y. Kanamori, M. Sasaki, and K. Hane, “Broadband antireflection gratings fabricated upon silicon substrate,” Opt. Lett. 24 (1999) 1422. [56] S. G. Cloutier, P. A. Kossyrev, and J. Xu, “Optical gain and stimulated emission in periodic nanopatterned crystalline silicon,” Nat. Mater. 4 (2005) 887. [57] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292 (2001) 1897. [58] M. W. Dashiell, U. Denker, and O. G. Schmidt, “Photoluminescence investigation of phononless radiative recombination and thermal-stability of germanium hut clusters on silicon (001),” Appl. Phys. Lett. 79 (2001) 2261.
摘要: 
本研究探討熱退火溫度效應,對於矽鍺磊晶薄膜材料特性之影響。矽鍺磊晶薄膜係由極高真空化學氣象沈積製作而得,並且在不同溫度(400–1000 ℃)下完成熱退火製程。應用高解析度x光繞射儀、附著力測試儀、殘留應力測試儀、奈米壓痕機及拉曼光譜儀,以描述矽鍺薄膜材料性質之變化。根據量測結果指出,隨著退火溫度的增加,矽鍺薄膜與矽基材間介面擴散,有增加的趨勢。此外,薄膜與矽基材間的附著力,經過800 ℃的熱退火製程後,由原本的476kg/cm2 ,增加至578kg/cm2。矽鍺薄膜的殘留應力亦由原本的-13.2 MPa 增加至115.9 MPa,其楊氏係數則由131.5 GPa 增加至173 GPa。由於該薄膜已超過臨界厚度,故其應力散失無可避免,藉由拉曼光譜儀的分析,完成800 ℃的熱退火製程後的矽鍺薄膜,其應力散失的程度已達99%。
藉由及時熱退火製程製做出奈米島陣列的抗反射矽鍺薄膜。此一退火製程造成矽鍺的聚集,形成特殊的奈米矽鍺島於薄膜上。由原子力顯微鏡的實驗結果指出,此一矽鍺奈米結構擁有規則的排列,而此奈米島陣列的矽鍺薄膜兼具抗反射的特性。未經熱退火製程的矽鍺薄膜,其對於紫外線的反射率為61.7 %,而經過 900 ℃ 退火後的矽鍺薄膜,對於紫外線之反射率則驟降至28.5 %,降幅高達 33.2 %。
此外,本研究亦製作出一類蜂窩奈米結構。該結構係由反應式離子蝕刻製作而成。於此一製程中,未使用任何微影技術。藉由熱退火製程所引發的自組性奈米島結構,扮演了奈米光罩的角色於乾蝕刻製程中。由場發射電子顯微鏡及原子力顯微鏡的實驗結果可清楚觀察到,該類蜂窩奈米結構是由奈米坑洞及奈米錐體所形成。而後,以熱氧化的方式形成一薄氧化層於此奈米結構上,則可發射出可見之螢光(波長介於550 至 625 奈米),此一現象應為位於氧化層與矽基材間的缺陷所造成。
本研究應用電漿蝕刻製作出另一自我排列之奈米網格陣列,此一自我排列之奈米網格亦未使用微影製程。由熱退火製程所形成的奈米矽鍺島,於電漿製程時作為一犧牲層,即可不使用曝光及顯影等步驟,而完成自我排列的奈米網格陣列。由掃瞄式電子顯微鏡及原子力顯微鏡的圖片中,可清楚觀察到,完成電漿蝕刻後奈米網格,為一排列整齊之結構。

This study presents the variations of material properties of SiGe epitaxial thin films at different annealing temperatures. The SiGe samples were deposited by ultrahigh vacuum chemical vapor deposition (UHVCVD) system. Various techniques, including high-resolution x-ray diffraction (HRXRD), interfacial adhesion strength tester, residual stress measurement, atomic force microscopy (AFM), field emission scanning microscopy (FESEM), nanoindentor and spectrophotometric, are used to characterize the material characteristics of SiGe thin films. According to the experimental results, the interfacial adhesion strength of SiGe thin film increased from 476kg/cm2 (as-grown) to 578kg/cm2 (after annealed at 800 ℃). Based on Raman analyses, the degree of strain-relaxed of SiGe sample with annealing of 800 ℃ is 99 %. Additionally, the residual stress of as-grown SiGe sample is -13.2 MPa and 115.9 MPa after heat treatment at 800 ℃. The Young's modulus of the SiGe film is 131.5 GPa as grown and 173 GPa after annealing at 800 ℃.
The nanoisland SiGe antireflective thin film is fabricated by using in-situ thermal annealing process. Comparison with as-grown SiGe sample, the SiGe sample annealed at 900 ℃ possesses antireflective properties. The decreased in reflectance is attributed to the nanoisland array on SiGe surface. Prior to heat treatment, the mean reflectance is approximately 61.7 % for ultraviolet ray, and the value significantly reduces to less than 28.5 % when the SiGe sample is annealed at 900 ℃.
Furthermore, a simple method is developed for manufacturing silicon quasi-beehive nanostructures (SQBNs)—using a nanopatterned SiGe thin film (featuring nanoislands induced through thermal annealing) as a hard nanomask for reactive ion etching (RIE) —that does not require the use of lithographic processing.
Moreover, the experimental results display that the visible photoluminescence is strongly promoted from 550 to 625 nm at root temperature, resulting from the defects at the rough interface between the oxide layer and SQBNs. That is to say the defects successfully acted as recombination centers.
Finally, the self-organized silicon nanogrids (SONs) are obtained using argon (Ar) plasma etching. The self-assembled island array that induced through heat treatment plays as a sacrificial layer, allowing the plasma etching to be completed without any lithography process. The FESEM and AFM images indicate that the SONs consist of regularly distributed nanocavities and nanotapers.
URI: http://hdl.handle.net/11455/2270
其他識別: U0005-1806200915452500
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.