Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/22704
標題: 奈米銀脫層黏土之抗菌機制及應用
Antimicrobial mechanism and applications of silver nanoparticles on the exfoliated platelet clay
作者: 包翊絹
Bau, I-Juian
關鍵字: 奈米銀;silver nanoparticles;抗菌機制;掃描式電子顯微鏡;金黃色葡萄球菌;大腸桿菌;沙門氏桿菌;鮑氏不動桿菌;antimicrobial mechanism;Scanning Electron Microscope;Staphylococcus aureus;Escherichia coli;Salmonella typhimurium;Acinetobacter baumannii
出版社: 生命科學系所
引用: Choi SH, Lee SH, Hwang YM, Lee KP, Kang HD. Interaction between the surface of the silver nanoparticles prepared by γ-irradiation and organic molecules containing thiolgroup. Radiation Physics and Chemistry. 2003. 67 :517-521 Dao Jun Guo, Hu Lin Li. Highly dispersed Ag nanoparticles on functional MWNT surfaces for methanol oxidation in alkaline solution. Carbon, 2005, 43 :1259-1264 Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res. 2000. 52(4) :662-668 Huang S, Mau AWH. Selective Growth of Aligned Carbon Nanotubes on a Silver-Patterned Substrate by the Silver Mirror Reaction. J. Phys. Chem. B. 2003. 15:3455-3458 Ivan S, Branka SS. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. Journal of Colloid and Interface Science. 2004. 275 :177-182 In-Joo Chin, Thomas Thurn-Albrechta, Ho-Cheol Kima, Thomas P. Russella, Jing Wang. On exfoliation of montmorillonite in epoxy. Polymer. 2001. 42 :5947-5952 Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK, Lee YS, Jeong DH, Cho MH. Antimicrobial effects of silver nanoparticles. Nanomedicine. 2007. 3(1) :95-101 Koper OB, Klabunde JS, Marchin GL, Klabunde KJ, Stoimenov P, Bohra L. Nanoscale powders and formulations with biocidal activity toward spores and vegetative cells of bacillus species, viruses, and toxins. Curr Microbiol. 2002. 44(1) :49-55 Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun H, Tam PK, Chiu JF, Che CM. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res. 2006. 5(4) :916-24 Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun H, Tam PK, Chiu JF, Che CM. Silver nanoparticles: partial oxidation and antibacterial activities. J Biol Inorg Chem. 2007. 12(4) :527-34 Percival SL, Bowler PG, Russell D. Bacterial resistance to silver in wound care. Journal of Hospital Infection. 2005. 60 :1-7 Russell AD , Hugo WB. Antimicrobial activity and action of silver. Prog. Med. Chem.1994. 31 :351-370 Sato M, Machida K, Arikado E, Saito H, Kakegawa T, Kobayashi H. Expression of outer membrane proteins in Escherichia coli growing at acid pH. Appl. Environ. Microbiol. 2000. 66 :943-947 Yamanaka M, Hara K, Kudo J. Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis. Appl Environ Microbiol. 2005. 71(11) :7589-7593 Zahed H, Fazlul H. Studies on the interaction between Ag+ and DNA. Journal of Inorganic Biochemistry. 2002. 91 :398-404 Katherine BH, Allen JB. Interaction of silver(I) ions with the respiratory chain of Escherichia coli: an electrochemical and scanning electrochemical microscopy study of the Antimicrobial Mechanism of Micromolar Ag+. Journal of Inorganic Biochemistry. 2005. 44 :13214-13223 Simon S. Bacterial silver resistance:molecular biology and uses and misuses of silver compounds. FEMS Microbiology Reviews 2003. 27 :341-353 Amit G, Le TP, Diane ET and Simon S. Diversity of silver resistance genes in IncH incompatibility group plasmids. Microbiology. 2001. 147 :3393-3402 Jose RM, Jose LE, Alejandra C, Katherine H, Juan BK, Jose TR, Miguel JY. The bactericidal effect of silver nanoparticles. Nanotechnology . 2005. 16 :2346-2353 Xiao-Hong Nancy X, William JB, Sophia VK, Qian W, Joshua JV. Real-time probing of membrane transport in living microbial cells using single nanoparticle optics and living cell imaging. Biochemistry. 2004. 43 :10400-104413 Kumar R, Münstedt H. Polyamide/Silver Antimicrobials: Silver ion release from antimicrobial polyamide/silver composites. Biomaterials. 2005. 26 :2081-2088 Siddhartha S, Tanmay B, Arnab R, Gajendra S, P R, Debabrata D. Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology. 2007. 18 :1-9 Masaru O, Henry CW, Krishnan S, Paul DR. Identification and characterization of a new lipoprotein, NlpI, in Escherichia coli K-12.Journal of Bacteriology. 1999. 181(14) :4318-4325 Ching HT, Yi X, Sooan S, Francescopaolo DC, Maneesh PS, Mian C, Kwang SK. Effects of ompA Deletion on Expression of Type 1 Fimbriae in Escherichia coli K1 Strain RS218 and on the Association of E. coli with Human Brain Microvascular Endothelial Cells. Infection and Immunity. 2006. 74(10) :45609-5616 Anna W, Celina J. Effect of Tn10/Tn5 transposons on the survival and mutation frequency of halogen light-irradiated AB1157 Escherichia coli K-12. Mutagenesis. 1999. 114(1) :129-134 Gil K, Benjamin AH, Lea D, Yehuda U, Israela B. Infection stages of the dermatophyte pathogen Trichophyton: microscopic characterization and proteolytic enzymes. Medical Mycology. 2007. 45 :149-155 Mares D, Romagnoli C, Sacchetti G, Vicentini C. Bruni A. Alterations in spore production in Trichophyton rubrum treated in vitro with 1- amino - 6 - methyl - 4 - phenylpyrazolo [ 3 , 4 - d ] - 1,2,3 - triazole. M ycoses. 1999. 42 :549-554 Kristien M, Errol Z. The Ames Salmonella/microsome mutagenicity assay. Mutation Research. 2000. 455 :29-60 Maron DM, Ames, BN. The Revised methods for the salmonella mutagenicity test. Mutation Research. 1983. 113 :173-215
摘要: 
銀或含銀化合物能抗菌力,而經奈米化的銀粒子也具有殺菌的功效,但其抗菌機制目前尚不清楚。本研究使用的奈米銀黏土材料AgNP/NSP與AgNP/SWN是使用NSP脫層黏土及SWN蒙脫土作為分散劑,以防止奈米銀粒子在製程中產生聚集,藉以研究奈米銀的抗菌機制。首先利用AgNP/NSP與AgNP/SWN對具多重抗藥性菌株鮑氏不動桿菌(Acinetobacter baumannii)及具有銀離子抗性之大腸桿菌菌株( E. coli strain J53 pMG101)作抑菌能力分析並與硝酸銀的抗菌能力作比較,比較後的結果顯示在相同銀濃度下, AgNP/NSP對此兩種菌均具有最好的抑菌能力。以掃瞄式電子顯微鏡(Scanning Electron Microscope)觀察經奈米銀黏土處理的細菌發現材料將其表面包覆,且使細菌聚集。加入propidium iodide (PI)後24小時,吸附於奈米銀黏土上的細菌內的DNA並無呈現紅色螢光,證明細菌的細胞膜大致完好,仍可抵抗PI進入細菌內,但是否因細胞膜仍有輕微損害而導致抑制細菌生長仍不清楚。使用大腸桿菌E. coli strain ML-35p,觀察到奈米銀黏土的確會增加細菌細胞膜的通透性,因此推測奈米銀黏土材料藉由此方式影響細菌的分裂而達到殺菌的功效。也發現只有高於0.1wt%奈米銀黏土可顯著降低β-galactosidase的酵素活性,證明奈米銀導致蛋白質變性的能力並不強。除細菌外,也發現AgNP/NSP與AgNP/SWN具有抑制真菌生長之特性並會將真菌表面包覆。另外在奈米銀脫層黏土材料應用於治療家禽細菌性下痢以取代抗生素的實驗中,顯示當雛雞感染沙門氏桿菌後的十八小時內,經口投與AgNP/NSP,可能可以減緩細菌經血液蔓延至其他器官而達到治療的效果。使用轉移子 ( transposon ) 對奈米銀粒子抗性基因進行篩選,也未發現突變細菌株,此結果顯示奈米銀並無基因毒性。最後在奈米銀黏土材料的致突變性試驗 (Ames test )中,結果顯示在0.5mg/plate 劑量以下不具有致突變的作用。而未來將更深入探討奈米銀黏土的抑菌機制並將其應用於細菌感染的治療上。

Silver or silver compound can inhibit bacteria growth. Silver nanoparticle also has the bactericidal effect but the antibacterial mechanism is still unknown. AgNP/NSP and AgNP/SWN, the materials used in this article, are synthesized by using nano silicate platelet clays and artificial organic clays as dispersing to stabilize and immobilize silver nanoparticles and consequently used to study the antibacterial mechanism of silver nanoparticles. Firstly, the growth inhibition capability of AgNP/NSP and AgNP/SWN to multidrug-resistant Acinetobacter baumannii and silver ion-resistant E. coli strain J53 pMG101 were analyzed and compared with silver nitrate. The result showed that among these three silver compound AgNP/NSP has the best bactericidal effect under the same silver concentration.Observation by using Scanning Electron Microscope(SEM) revealed that AgNP/NSP encapsulated the bacteria and form multiple clay-cells aggregates. Absorbed bacteria on AgNP/NSP repelled the entry of propiodium iodide(PI) indicating that bacteria cell membrane was not ruptured. But whether the mild lesion of cell membrane leads the growth retardation is still unknown. By using E. coli strain ML-35p, we found that Ag nanoparticles clay indeed could increase the membrane permeability.Therefore we speculate that Ag nanoparticles clay has bactericidal effect through interfering intracellular homeostasis. We also find only higher than 0.1wt% Ag nanoparticles clay can obviously decrease β-galactosidase activity and this result demonstrated the oxidization of functional proteins by Ag nanoparticles was not strong. Besides bacteria , AgNP/NSP and AgNP/SWN also could inhibit the growth of infectious fungi, including Trichophyton rubrum、Trichophyton fluviomuniense、Trichophyton mentagrophytes、Microsporum canis and Microsporum gypseum , the common pathogens of Tinea pedis. For the substitution of antibiotics, Ag nanoparticles clay was applied to cure fowl diarrhea after infection with salmonella. After eighteen hours, AgNP/NSP via oral route retarded bacteria spread to other organ. The Ag nanoparticles- resistant bacteria was not found, showing the safety of clinical application. We further demonstrated that geno-safety of AgNP/NSP by Ames test, showing lower than 0.5mg/plate dose have no genetic mutation. In the future , we will further explore the mechanism of bactericidal effect of AgNP/NSP and apply Ag nanoparticles clay to clinical treatment of bacterial infection.
URI: http://hdl.handle.net/11455/22704
其他識別: U0005-1908200812315100
Appears in Collections:生命科學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.