Please use this identifier to cite or link to this item:
標題: 阿拉伯芥RTNLB2與RTNLB4蛋白質於土壤農桿菌感染植物過程之功能分析
Functional study of the AtRTNLB2 and AtRTNLB4 proteins in Agrobacterium-mediated plant transformation process
作者: 張耀仁
Chang, Yao-Ren
關鍵字: arabidopsis;阿拉伯芥;agrobacterium;RTNLB;農桿菌;RTNLB
出版社: 生命科學系所
引用: Akiyoshi, D.E., Klee, H., Amasino, R.M., Nester, E.W., and Gordon, M.P. (1984). T-DNA of Agrobacterium tumefaciens encodes an enzyme of cytokinin biosynthesis. Proc Natl Acad Sci U S A 81, 5994-5998. Alonso, J.M., Stepanova, A.N., Leisse, T.J., Kim, C.J., Chen, H., Shinn, P., Stevenson, D.K., Zimmerman, J., Barajas, P., Cheuk, R., Gadrinab, C., Heller, C., Jeske, A., Koesema, E., Meyers, C.C., Parker, H., Prednis, L., Ansari, Y., Choy, N., Deen, H., Geralt, M., Hazari, N., Hom, E., Karnes, M., Mulholland, C., Ndubaku, R., Schmidt, I., Guzman, P., Aguilar-Henonin, L., Schmid, M., Weigel, D., Carter, D.E., Marchand, T., Risseeuw, E., Brogden, D., Zeko, A., Crosby, W.L., Berry, C.C., and Ecker, J.R. (2003). Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301, 653-657. Aly, K.A., and Baron, C. (2007). The VirB5 protein localizes to the T-pilus tips in Agrobacterium tumefaciens. Microbiology 153, 3766-3775. Aly, K.A., Krall, L., Lottspeich, F., and Baron, C. (2008). The type IV secretion system component VirB5 binds to the trans-zeatin biosynthetic enzyme Tzs and enables its translocation to the cell surface of Agrobacterium tumefaciens. J Bacteriol 190, 1595-1604. Anand, A., Krichevsky, A., Schornack, S., Lahaye, T., Tzfira, T., Tang, Y., Citovsky, V., and Mysore, K.S. (2007). Arabidopsis VIRE2 INTERACTING PROTEIN2 is required for Agrobacterium T-DNA integration in plants. Plant Cell 19, 1695-1708. Anderson, L.B., Hertzel, A.V., and Das, A. (1996). Agrobacterium tumefaciens VirB7 and VirB9 form a disulfide-linked protein complex. Proc Natl Acad Sci U S A 93, 8889-8894. Atmakuri, K., and Christie, P.J. (2008). Translocation of oncogenic T-DNA and effector proteins to plant cells. in Agrobacterium: From Biology to Biotechnology, T. Tzfira and V. Citovsky, ed (Spriner, New York, NY, USA), pp. 315-364. Atmakuri, K., Cascales, E., and Christie, P.J. (2004). Energetic components VirD4, VirB11 and VirB4 mediate early DNA transfer reactions required for bacterial type IV secretion. Mol Microbiol 54, 1199-1211. Bailey, S., Ward, D., Middleton, R., Grossmann, J.G., and Zambryski, P.C. (2006). Agrobacterium tumefaciens VirB8 structure reveals potential protein-protein interaction sites. Proc Natl Acad Sci U S A 103, 2582-2587. Ballas, N., and Citovsky, V. (1997). Nuclear localization signal binding protein from Arabidopsis mediates nuclear import of Agrobacterium VirD2 protein. Proc Natl Acad Sci U S A 94, 10723-10728. Baron, C., Llosa, M., Zhou, S., and Zambryski, P.C. (1997). VirB1, a component of the T-complex transfer machinery of Agrobacterium tumefaciens, is processed to a C-terminal secreted product, VirB1. J Bacteriol 179, 1203-1210. Batchelor, R.A., Pearson, B.M., Friis, L.M., Guerry, P., and Wells, J.M. (2004). Nucleotide sequences and comparison of two large conjugative plasmids from different Campylobacter species. Microbiology 150, 3507-3517. Beaupre, C.E., Bohne, J., Dale, E.M., and Binns, A.N. (1997). Interactions between VirB9 and VirB10 membrane proteins involved in movement of DNA from Agrobacterium tumefaciens into plant cells. J Bacteriol 179, 78-89. Becker, D., Kemper, E., Schell, J., and Masterson, R. (1992). New plant binary vectors with selectable markers located proximal to the left T-DNA border. Plant Mol Biol 20, 1195-1197. Berger, B.R., and Christie, P.J. (1993). The Agrobacterium tumefaciens virB4 gene product is an essential virulence protein requiring an intact nucleoside triphosphate-binding domain. J Bacteriol 175, 1723-1734. Berger, B.R., and Christie, P.J. (1994). Genetic complementation analysis of the Agrobacterium tumefaciens virB operon: virB2 through virB11 are essential virulence genes. J Bacteriol 176, 3646-3660. Boevink, P., Oparka, K., Santa Cruz, S., Martin, B., Betteridge, A., and Hawes, C. (1998). Stacks on tracks: the plant Golgi apparatus traffics on an actin/ER network. Plant J 15, 441-447. Braun, A.C. (1958). A physiological basis for autonomous growth of the crown-gall tumor cell. Proc Natl Acad Sci U S A 44, 344-349. Cangelosi, G.A., Ankenbauer, R.G., and Nester, E.W. (1990). Sugars induce the Agrobacterium virulence genes through a periplasmic binding protein and a transmembrane signal protein. Proc Natl Acad Sci U S A 87, 6708-6712. Cangelosi, G.A., Martinetti, G., Leigh, J.A., Lee, C.C., Theines, C., and Nester, E.W. (1989). Role for Agrobacterium tumefaciens ChvA protein in export of beta-1,2-glucan. J Bacteriol 171, 1609-1615. Cangelosi, G.A., Hung, L., Puvanesarajah, V., Stacey, G., Ozga, D.A., Leigh, J.A., and Nester, E.W. (1987). Common loci for Agrobacterium tumefaciens and Rhizobium meliloti exopolysaccharide synthesis and their roles in plant interactions. J Bacteriol 169, 2086-2091. Carney, D.N., Gazdar, A.F., Bepler, G., Guccion, J.G., Marangos, P.J., Moody, T.W., Zweig, M.H., and Minna, J.D. (1985). Establishment and identification of small cell lung cancer cell lines having classic and variant features. Cancer Res 45, 2913-2923. Cascales, E., Atmakuri, K., Liu, Z., Binns, A.N., and Christie, P.J. (2005). Agrobacterium tumefaciens oncogenic suppressors inhibit T-DNA and VirE2 protein substrate binding to the VirD4 coupling protein. Mol Microbiol 58, 565-579. Cascales, E., and Christie, P.J. (2003). The versatile bacterial type IV secretion systems. Nat Rev Microbiol 1, 137-149. Cascales, E., and Christie, P.J. (2004a). Definition of a bacterial type IV secretion pathway for a DNA substrate. Science 304, 1170-1173. Cascales, E., and Christie, P.J. (2004b). Agrobacterium VirB10, an ATP energy sensor required for type IV secretion. Proc Natl Acad Sci U S A 101, 17228-17233. Chang, C.H., and Winans, S.C. (1992). Functional roles assigned to the periplasmic, linker, and receiver domains of the Agrobacterium tumefaciens VirA protein. J Bacteriol 174, 7033-7039. Chilton, M.D., and Que, Q. (2003). Targeted integration of T-DNA into the tobacco genome at double-stranded breaks: new insights on the mechanism of T-DNA integration. Plant Physiol 133, 956-965. Chilton, M.D., Drummond, M.H., Merio, D.J., Sciaky, D., Montoya, A.L., Gordon, M.P., and Nester, E.W. (1977). Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis. Cell 11, 263-271. Christie, P.J., Ward, J.E., Winans, S.C., and Nester, E.W. (1988). The Agrobacterium tumefaciens virE2 gene product is a single-stranded-DNA-binding protein that associates with T-DNA. J Bacteriol 170, 2659-2667. Christie, P.J., Atmakuri, K., Krishnamoorthy, V., Jakubowski, S., and Cascales, E. (2005). Biogenesis, architecture, and function of bacterial type IV secretion systems. Annu Rev Microbiol 59, 451-485. Citovsky, V., Wong, M.L., and Zambryski, P. (1989). Cooperative interaction of Agrobacterium VirE2 protein with single-stranded DNA: implications for the T-DNA transfer process. Proc Natl Acad Sci U S A 86, 1193-1197. Citovsky, V., Guralnick, B., Simon, M.N., and Wall, J.S. (1997). The molecular structure of Agrobacterium VirE2-single stranded DNA complexes involved in nuclear import. J Mol Biol 271, 718-727. Citovsky, V., Kapelnikov, A., Oliel, S., Zakai, N., Rojas, M.R., Gilbertson, R.L., Tzfira, T., and Loyter, A. (2004). Protein interactions involved in nuclear import of the Agrobacterium VirE2 protein in vivo and in vitro. J Biol Chem 279, 29528-29533. Citovsky, V., Kozlovsky, S. V., Lacroix, B., Zaltsman, A., Dafny-Yelin, M,. Vyas, S., Tovkach, A.. and Tzfira, T. (2007). Biological systems of the host cell involved in Agrobacterium infection. Cell Microbiol 9, 9-20. Dang, T.A., and Christie, P.J. (1997). The VirB4 ATPase of Agrobacterium tumefaciens is a cytoplasmic membrane protein exposed at the periplasmic surface. J Bacteriol 179, 453-462. Dang, T.A., Zhou, X.R., Graf, B., and Christie, P.J. (1999). Dimerization of the Agrobacterium tumefaciens VirB4 ATPase and the effect of ATP-binding cassette mutations on the assembly and function of the T-DNA transporter. Mol Microbiol 32, 1239-1253. Das, A., and Xie, Y.H. (2000). The Agrobacterium T-DNA transport pore proteins VirB8, VirB9, and VirB10 interact with one another. J Bacteriol 182, 758-763. de Groot, M.J., Bundock, P., Hooykaas, P.J., and Beijersbergen, A.G. (1998). Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol 16, 839-842. De Vos, G., and Zambryski, P. (1989). Expression of Agrobacterium nopaline-specific VirD1, VirD2, and VirC1 proteins and their requirement for T-strand production in E. coli. Mol Plant Microbe Interact 2, 43-52. DeCleene, M., and DeLey, J. (1976). The host range of crown gall. Bot. Rev. 42, 389-466. Dijkstra, A.J., and Keck, W. (1996). Peptidoglycan as a barrier to transenvelope transport. J Bacteriol 178, 5555-5562. Eisenbrandt, R., Kalkum, M., Lai, E.M., Lurz, R., Kado, C.I., and Lanka, E. (1999). Conjugative pili of IncP plasmids, and the Ti plasmid T pilus are composed of cyclic subunits. J Biol Chem 274, 22548-22555. Fernandez, D., Spudich, G.M., Zhou, X.R., and Christie, P.J. (1996a). The Agrobacterium tumefaciens VirB7 lipoprotein is required for stabilization of VirB proteins during assembly of the T-complex transport apparatus. J Bacteriol 178, 3168-3176. Fernandez, D., Dang, T.A., Spudich, G.M., Zhou, X.R., Berger, B.R., and Christie, P.J. (1996b). The Agrobacterium tumefaciens virB7 gene product, a proposed component of the T-complex transport apparatus, is a membrane-associated lipoprotein exposed at the periplasmic surface. J Bacteriol 178, 3156-3167. Finberg, K.E., Muth, T.R., Young, S.P., Maken, J.B., Heitritter, S.M., Binns, A.N., and Banta, L.M. (1995). Interactions of VirB9, -10, and -11 with the membrane fraction of Agrobacterium tumefaciens: solubility studies provide evidence for tight associations. J Bacteriol 177, 4881-4889. Fournier, A.E., GrandPre, T., and Strittmatter, S.M. (2001). Identification of a receptor mediating Nogo-66 inhibition of axonal regeneration. Nature 409, 341-346. Gelvin, S.B. (2006). Agrobacterium transformation of Arabidopsis thaliana roots: a quantitative assay. Methods Mol Biol 343, 105-113. Godoy, C., Arellano, M., Diaz, M., Duran, A., and Perez, P. (1996). Characterization of cwl1+, a gene from Schizosaccharomyces pombe whose overexpression causes cell lysis. Yeast 12, 983-990. Goodner, B., Hinkle, G., Gattung, S., Miller, N., Blanchard, M., Qurollo, B., Goldman, B.S., Cao, Y., Askenazi, M., Halling, C., Mullin, L., Houmiel, K., Gordon, J., Vaudin, M., Iartchouk, O., Epp, A., Liu, F., Wollam, C., Allinger, M., Doughty, D., Scott, C., Lappas, C., Markelz, B., Flanagan, C., Crowell, C., Gurson, J., Lomo, C., Sear, C., Strub, G., Cielo, C., and Slater, S. (2001). Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58. Science 294, 2323-2328. GrandPre, T., Nakamura, F., Vartanian, T., and Strittmatter, S.M. (2000). Identification of the Nogo inhibitor of axon regeneration as a Reticulon protein. Nature 403, 439-444. Guyon, P., Chilton, M.D., Petit, A., and Tempe, J. (1980). Agropine in "null-type" crown gall tumors: Evidence for generality of the opine concept. Proc Natl Acad Sci U S A 77, 2693-2697. Hapfelmeier, S., Domke, N., Zambryski, P.C., and Baron, C. (2000). VirB6 is required for stabilization of VirB5 and VirB3 and formation of VirB7 homodimers in Agrobacterium tumefaciens. J Bacteriol 182, 4505-4511. Ho, Y., Gruhler, A., Heilbut, A., Bader, G.D., Moore, L., Adams, S.L., Millar, A., Taylor, P., Bennett, K., Boutilier, K., Yang, L., Wolting, C., Donaldson, I., Schandorff, S., Shewnarane, J., Vo, M., Taggart, J., Goudreault, M., Muskat, B., Alfarano, C., Dewar, D., Lin, Z., Michalickova, K., Willems, A.R., Sassi, H., Nielsen, P.A., Rasmussen, K.J., Andersen, J.R., Johansen, L.E., Hansen, L.H., Jespersen, H., Podtelejnikov, A., Nielsen, E., Crawford, J., Poulsen, V., Sorensen, B.D., Matthiesen, J., Hendrickson, R.C., Gleeson, F., Pawson, T., Moran, M.F., Durocher, D., Mann, M., Hogue, C.W., Figeys, D., and Tyers, M. (2002). Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415, 180-183. Hwang, H.H., and Gelvin, S.B. (2004). Plant proteins that interact with VirB2, the Agrobacterium tumefaciens pilin protein, mediate plant transformation. Plant Cell 16, 3148-3167. Ishida, K., Yamashino, T., Yokoyama, A., and Mizuno, T. (2008). Three type-B response regulators, ARR1, ARR10 and ARR12, play essential but redundant roles in cytokinin signal transduction throughout the life cycle of Arabidopsis thaliana. Plant Cell Physiol 49, 47-57. Iwahashi, J., Kawasaki, I., Kohara, Y., Gengyo-Ando, K., Mitani, S., Ohshima, Y., Hamada, N., Hara, K., Kashiwagi, T., and Toyoda, T. (2002). Caenorhabditis elegans reticulon interacts with RME-1 during embryogenesis. Biochem Biophys Res Commun 293, 698-704. Jakubowski, S.J., Cascales, E., Krishnamoorthy, V., and Christie, P.J. (2005). Agrobacterium tumefaciens VirB9, an outer-membrane-associated component of a type IV secretion system, regulates substrate selection and T-pilus biogenesis. J Bacteriol 187, 3486-3495. Jakubowski, S.J., Krishnamoorthy, V., and Christie, P.J. (2003). Agrobacterium tumefaciens VirB6 protein participates in formation of VirB7 and VirB9 complexes required for type IV secretion. J Bacteriol 185, 2867-2878. Jakubowski, S.J., Krishnamoorthy, V., Cascales, E., and Christie, P.J. (2004). Agrobacterium tumefaciens VirB6 domains direct the ordered export of a DNA substrate through a type IV secretion System. J Mol Biol 341, 961-977. Jayaswal, R.K., Veluthambi, K., Gelvin, S.B., and Slightom, J.L. (1987). Double-stranded cleavage of T-DNA and generation of single-stranded T-DNA molecules in Escherichia coli by a virD-encoded border-specific endonuclease from Agrobacterium tumefaciens. J Bacteriol 169, 5035-5045. Jin, S., Roitsch, T., Ankenbauer, R.G., Gordon, M.P., and Nester, E.W. (1990a). The VirA protein of Agrobacterium tumefaciens is autophosphorylated and is essential for vir gene regulation. J Bacteriol 172, 525-530. Jin, S.G., Roitsch, T., Christie, P.J., and Nester, E.W. (1990b). The regulatory VirG protein specifically binds to a cis-acting regulatory sequence involved in transcriptional activation of Agrobacterium tumefaciens virulence genes. J Bacteriol 172, 531-537. Jin, S.G., Prusti, R.K., Roitsch, T., Ankenbauer, R.G., and Nester, E.W. (1990c). Phosphorylation of the VirG protein of Agrobacterium tumefaciens by the autophosphorylated VirA protein: essential role in biological activity of VirG. J Bacteriol 172, 4945-4950. Jones, A.L., Shirasu, K., and Kado, C.I. (1994). The product of the virB4 gene of Agrobacterium tumefaciens promotes accumulation of VirB3 protein. J Bacteriol 176, 5255-5261. Jones, A.L., Lai, E.M., Shirasu, K., and Kado, C.I. (1996). VirB2 is a processed pilin-like protein encoded by the Agrobacterium tumefaciens Ti plasmid. J Bacteriol 178, 5706-5711. Kemp, J.D. (1978). In vivo synthesis of crown gall-specific Agrobacterium tumefaciens-directed derivatives of basic amino acids. Plant Physiol 62, 26-30. Klee, H., Montoya, A., Horodyski, F., Lichtenstein, C., Garfinkel, D., Fuller, S., Flores, C., Peschon, J., Nester, E., and Gordon, M. (1984). Nucleotide sequence of the tms genes of the pTiA6NC octopine Ti plasmid: two gene products involved in plant tumorigenesis. Proc Natl Acad Sci U S A 81, 1728-1732. Koncz, C., and Schell, J. (1986). The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a nove1 type of Agrobacterium binary vector. Mol. Gen. Gene 204, 383-396. Kumar, R.B., and Das, A. (2001). Functional analysis of the Agrobacterium tumefaciens T-DNA transport pore protein VirB8. J Bacteriol 183, 3636-3641. Kumar, R.B., and Das, A. (2002). Polar location and functional domains of the Agrobacterium tumefaciens DNA transfer protein VirD4. Mol Microbiol 43, 1523-1532. Kumar, R.B., Xie, Y.H., and Das, A. (2000). Subcellular localization of the Agrobacterium tumefaciens T-DNA transport pore proteins: VirB8 is essential for the assembly of the transport pore. Mol Microbiol 36, 608-617. Kumar, S., Nei, M., Dudley, J., and Tamura, K. (2008). MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9, 299-306. Kunik, T., Tzfira, T., Kapulnik, Y., Gafni, Y., Dingwall, C., and Citovsky, V. (2001). Genetic transformation of HeLa cells by Agrobacterium. Proc Natl Acad Sci U S A 98, 1871-1876. Lacroix, B., Vaidya, M., Tzfira, T., and Citovsky, V. (2005). The VirE3 protein of Agrobacterium mimics a host cell function required for plant genetic transformation. EMBO J 24, 428-437. Lai, E.M., and Kado, C.I. (1998). Processed VirB2 is the major subunit of the promiscuous pilus of Agrobacterium tumefaciens. J Bacteriol 180, 2711-2717. Lai, E.M., and Kado, C.I. (2000). The T-pilus of Agrobacterium tumefaciens. Trends Microbiol 8, 361-369. Lai, E.M., and Kado, C.I. (2002). The Agrobacterium tumefaciens T pilus composed of cyclic T pilin is highly resilient to extreme environments. FEMS Microbiol Lett 210, 111-114. Lai, E.M., Eisenbrandt, R., Kalkum, M., Lanka, E., and Kado, C.I. (2002). Biogenesis of T pili in Agrobacterium tumefaciens requires precise VirB2 propilin cleavage and cyclization. J Bacteriol 184, 327-330. Letourneur, F., Gaynor, E.C., Hennecke, S., Demolliere, C., Duden, R., Emr, S.D., Riezman, H., and Cosson, P. (1994). Coatomer is essential for retrieval of dilysine-tagged proteins to the endoplasmic reticulum. Cell 79, 1199-1207. Li, J., Krichevsky, A., Vaidya, M., Tzfira, T., and Citovsky, V. (2005a). Uncoupling of the functions of the Arabidopsis VIP1 protein in transient and stable plant genetic transformation by Agrobacterium. Proc Natl Acad Sci U S A 102, 5733-5738. Li, J., Vaidya, M., White, C., Vainstein, A., Citovsky, V., and Tzfira, T. (2005b). Involvement of KU80 in T-DNA integration in plant cells. Proc Natl Acad Sci U S A 102, 19231-19236. Link, G.K., and Eggers, V. (1941). Hyperauxiny in crown gall of tomato. Bot. Gaz. 103, 87-106. Loake, G.J., Ashby, A.M., and Shaw, C.M. (1988). Attraction of Agrobacterium tumefaciens C58 towards sugars involves a highly sensitive chemotaxis system. J. Gen. Microbiol 134, 1427-1432. Matthysse, A.G. (1983). Role of bacterial cellulose fibrils in Agrobacterium tumefaciens infection. J Bacteriol 154, 906-915. Matthysse, A.G., Holmes, K.V., and Gurlitz, R.H. (1981). Elaboration of cellulose fibrils by Agrobacterium tumefaciens during attachment to carrot cells. J Bacteriol 145, 583-595. Middleton, R., Sjolander, K., Krishnamurthy, N., Foley, J., and Zambryski, P. (2005). Predicted hexameric structure of the Agrobacterium VirB4 C terminus suggests VirB4 acts as a docking site during type IV secretion. Proc Natl Acad Sci U S A 102, 1685-1690. Mikami, K., Ichimura, K., Iuch, S., Yamaguchi-Shinozaki, K., and Shinozaki, K. (1997). Molecular characterization of a cDNA encoding a novel small GTP-binding protein from Arabidopsis thaliana. Biochim Biophys Acta 1354, 99-104. Montoya, A.L., Moore, L.W., Gordon, M.P., and Nester, E.W. (1978). Multiple genes coding for octopine-degrading enzymes in Agrobacterium. J Bacteriol 136, 909-915. Montoya, A.L., Chilton, M.D., Gordon, M.P., Sciaky, D., and Nester, E.W. (1977). Octopine and nopaline metabolism in Agrobacterium tumefaciens and crown gall tumor cells: role of plasmid genes. J Bacteriol 129, 101-107. Mushegian, A.R., Fullner, K.J., Koonin, E.V., and Nester, E.W. (1996). A family of lysozyme-like virulence factors in bacterial pathogens of plants and animals. Proc Natl Acad Sci U S A 93, 7321-7326. Nam, J., Matthysse, A.G., and Gelvin, S.B. (1997). Differences in susceptibility of Arabidopsis ecotypes to crown gall disease may result from a deficiency in T-DNA integration. Plant Cell 9, 317-333. Nziengui, H., Bouhidel, K., Pillon, D., Der, C., Marty, F., and Schoefs, B. (2007). Reticulon-like proteins in Arabidopsis thaliana: structural organization and ER localization. FEBS Lett 581, 3356-3362. Oertle, T., Klinger, M., Stuermer, C.A., and Schwab, M.E. (2003). A reticular rhapsody: phylogenic evolution and nomenclature of the RTN/Nogo gene family. FASEB J 17, 1238-1247. Oertle, T., and Schwab, M.E. (2003). Nogo and its paRTNers. Trends Cell Biol 13, 187-194. Okamoto, S., Toyoda-Yamamoto, A., Ito, K., Takebe, I., and Machida, Y. (1991). Localization and orientation of the VirD4 protein of Agrobacterium tumefaciens in the cell membrane. Mol Gen Genet 228, 24-32. Petit, A., S. Delhaye, J., Tempe, J., and morel, G. (1970). Recherches sur les guanidines des tissue de crown gall.Mise en evidence d''une relation biochemique specifique entre les souches d''Agrobacterium tumefaciens et les tumeurs qu''elles induisent. Physiol 8, 205-213. Porter, S.G., Yanofsky, M.F., and Nester, E.W. (1987). Molecular characterization of the virD operon from Agrobacterium tumefaciens. Nucleic Acids Res 15, 7503-7517. Rashkova, S., Zhou, X.R., Chen, J., and Christie, P.J. (2000). Self-assembly of the Agrobacterium tumefaciens VirB11 traffic ATPase. J Bacteriol 182, 4137-4145. Roebroek, A.J., van de Velde, H.J., Van Bokhoven, A., Broers, J.L., Ramaekers, F.C., and Van de Ven, W.J. (1993). Cloning and expression of alternative transcripts of a novel neuroendocrine-specific gene and identification of its 135-kDa translational product. J Biol Chem 268, 13439-13447. Sagulenko, E., Sagulenko, V., Chen, J., and Christie, P.J. (2001a). Role of Agrobacterium VirB11 ATPase in T-pilus assembly and substrate selection. J Bacteriol 183, 5813-5825. Sagulenko, V., Sagulenko, E., Jakubowski, S., Spudich, E., and Christie, P.J. (2001b). VirB7 lipoprotein is exocellular and associates with the Agrobacterium tumefaciens T pilus. J Bacteriol 183, 3642-3651. Salman, H., Abu-Arish, A., Oliel, S., Loyter, A., Klafter, J., Granek, R., and Elbaum, M. (2005). Nuclear localization signal peptides induce molecular delivery along microtubules. Biophys J 89, 2134-2145. Savvides, S.N., Yeo, H.J., Beck, M.R., Blaesing, F., Lurz, R., Lanka, E., Buhrdorf, R., Fischer, W., Haas, R., and Waksman, G. (2003). VirB11 ATPases are dynamic hexameric assemblies: new insights into bacterial type IV secretion. EMBO J 22, 1969-1980. Schmidt-Eisenlohr, H., Domke, N., Angerer, C., Wanner, G., Zambryski, P.C., and Baron, C. (1999). Vir proteins stabilize VirB5 and mediate its association with the T pilus of Agrobacterium tumefaciens. J Bacteriol 181, 7485-7492. Schrammeijer, B., Risseeuw, E., Pansegrau, W., Regensburg-Tuink, T.J., Crosby, W.L., and Hooykaas, P.J. (2001). Interaction of the virulence protein VirF of Agrobacterium tumefaciens with plant homologs of the yeast Skp1 protein. Curr Biol 11, 258-262. Shirasu, K., and Kado, C.I. (1993). Membrane location of the Ti plasmid VirB proteins involved in the biosynthesis of a pilin-like conjugative structure on Agrobacterium tumefaciens. FEMS Microbiol Lett 111, 287-294. Senden, N.H., van de Velde, H.J., Broers, J.L., Timmer, E.D., Kuijpers, H.J., Roebroek, A.J., Van de Ven, W.J., and Ramaekers, F.C. (1994). Subcellular localization and supramolecular organization of neuroendocrine-specific protein B (NSP-B) in small cell lung cancer. Eur J Cell Biol 65, 341-353. Smith, E.F., and Townsend, C.O. (1907). A plant-tumor of bacterial origin. Science 25, 671-673. Smith, V.A., and Hindley., J. (1978). Effect of agrocin 84 on attachment of Agrobacterium tumefaciens to cultured tobacoo cells Nature 276, 498-500. Spudich, G.M., Fernandez, D., Zhou, X.R., and Christie, P.J. (1996). Intermolecular disulfide bonds stabilize VirB7 homodimers and VirB7/VirB9 heterodimers during biogenesis of the Agrobacterium tumefaciens T-complex transport apparatus. Proc Natl Acad Sci U S A 93, 7512-7517. Stachel, E., S., Messens, E., VanMontagu, M., and Zambryski, P. (1985). Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature 318, 624-629. Stachel, S.E., and Zambryski, P.C. (1986). virA and virG control the plant-induced activation of the T-DNA transfer process of A. tumefaciens Cell 46, 325-333. Stephens, K.M., Roush, C., and Nester, E. (1995). Agrobacterium tumefaciens VirB11 protein requires a consensus nucleotide-binding site for function in virulence. J Bacteriol 177, 27-36. Taiz, L., and Zeiger, E. (2002). Plant physiology.4th ed.Sinauer Associates, Inc., (Sunderland, MA, USA), pp. 478-481. Taketomi, M., Kinoshita, N., Kimura, K., Kitada, M., Noda, T., Asou, H., Nakamura, T., and Ide, C. (2002). Nogo-A expression in mature oligodendrocytes of rat spinal cord in association with specific molecules. Neurosci Lett 332, 37-40. Thompson, J.D., Higgins, D.G., and Gibson, T.J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673-4680. Thorstenson, Y.R., and Zambryski, P.C. (1994). The essential virulence protein VirB8 localizes to the inner membrane of Agrobacterium tumefaciens. J Bacteriol 176, 1711-1717. Tolley, N., Sparkes, I.A., Hunter, P.R., Craddock, C.P., Nuttall, J., Roberts, L.M., Hawes, C., Pedrazzini, E., and Frigerio, L. (2008). Overexpression of a plant reticulon remodels the lumen of the cortical endoplasmic reticulum but does not perturb protein transport. Traffic 9, 94-102. Toro, N., Datta, A., Carmi, O.A., Young, C., Prusti, R.K., and Nester, E.W. (1989). The Agrobacterium tumefaciens virC1 gene product binds to overdrive, a T-DNA transfer enhancer. J Bacteriol 171, 6845-6849. Tzfira, T., Frankman, L.R., Vaidya, M., and Citovsky, V. (2003). Site-specific integration of Agrobacterium tumefaciens T-DNA via double-stranded intermediates. Plant Physiol 133, 1011-1023. Tzfira, T., Vaidya, M., and Citovsky, V. (2001). VIP1, an Arabidopsis protein that interacts with Agrobacterium VirE2, is involved in VirE2 nuclear import and Agrobacterium infectivity. EMBO J 20, 3596-3607. Tzfira, T., Vaidya, M., and Citovsky, V. (2004). Involvement of targeted proteolysis in plant genetic transformation by Agrobacterium. Nature 431, 87-92. van de Velde, H.J., Roebroek, A.J., Senden, N.H., Ramaekers, F.C., and Van de Ven, W.J. (1994a). NSP-encoded reticulons, neuroendocrine proteins of a novel gene family associated with membranes of the endoplasmic reticulum. J Cell Sci 107 , 2403-2416. van de Velde, H.J., Senden, N.H., Roskams, T.A., Broers, J.L., Ramaekers, F.C., Roebroek, A.J., and Van de Ven, W.J. (1994b). NSP-encoded reticulons are neuroendocrine markers of a novel category in human lung cancer diagnosis. Cancer Res 54, 4769-4776. Vergunst, A.C., Schrammeijer, B., den Dulk-Ras, A., de Vlaam, C.M., Regensburg-Tuink, T.J., and Hooykaas, P.J. (2000). VirB/D4-dependent protein translocation from Agrobacterium into plant cells. Science 290, 979-982. Vergunst, A.C., Lier, M.C.M.v., Dulk-Ras, A.d., ve, T.A.G.S., Anette Ouwehand, and Hooykaas, P.J.J. (2004). Positive charge is an important feature of the C-terminal transport signal of the VirB/D4-translocated proteins of Agrobacterium. Proc Natl Acad Sci U S A 102, 832-837. Vogel, A.M., Yoon, J., and Das, A. (1995). Mutational analysis of a conserved motif of Agrobacterium tumefaciens VirD2. Nucleic Acids Res 23, 4087-4091. Volff, J.N., and Altenbuchner, J. (2000). A new beginning with new ends: linearisation of circular chromosomes during bacterial evolution. FEMS Microbiol Lett 186, 143-150. Ward, D.V., Draper, O., Zupan, J.R., and Zambryski, P.C. (2002). Peptide linkage mapping of the Agrobacterium tumefaciens vir-encoded type IV secretion system reveals protein subassemblies. Proc Natl Acad Sci U S A 99, 11493-11500. Ward, J.E., Jr., Dale, E.M., Nester, E.W., and Binns, A.N. (1990). Identification of a virB10 protein aggregate in the inner membrane of Agrobacterium tumefaciens. J Bacteriol 172, 5200-5210. Wendland, B. (2001). Round-trip ticket: recycling to the plasma membrane requires RME-1. Nat Cell Biol 3, E133-135. Wieczorek, D.F., and Hughes, S.R. (1991). Developmentally regulated cDNA expressed exclusively in neural tissue. Brain Res Mol Brain Res 10, 33-41. Winans, S.C. (1990). Transcriptional induction of an Agrobacterium regulatory gene at tandem promoters by plant-released phenolic compounds, phosphate starvation, and acidic growth media. J Bacteriol 172, 2433-2438. Wood, D.W., Setubal, J.C., Kaul, R., Monks, D.E., Kitajima, J.P., Okura, V.K., Zhou, Y., Chen, L., Wood, G.E., Almeida, N.F., Jr., Woo, L., Chen, Y., Paulsen, I.T., Eisen, J.A., Karp, P.D., Bovee, D., Sr., Chapman, P., Clendenning, J., Deatherage, G., Gillet, W., Grant, C., Kutyavin, T., Levy, R., Li, M.J., McClelland, E., Palmieri, A., Raymond, C., Rouse, G., Saenphimmachak, C., Wu, Z., Romero, P., Gordon, D., Zhang, S., Yoo, H., Tao, Y., Biddle, P., Jung, M., Krespan, W., Perry, M., Gordon-Kamm, B., Liao, L., Kim, S., Hendrick, C., Zhao, Z.Y., Dolan, M., Chumley, F., Tingey, S.V., Tomb, J.F., Gordon, M.P., Olson, M.V., and Nester, E.W. (2001). The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science 294, 2317-2323. Woodsmall, R.M., and Benson, D.A. (1993). Information resources at the National Center for Biotechnology Information. Bull Med Libr Assoc 81, 282-284. Yanofsky, M.F., Porter, S.G., Young, C., Albright, L.M., Gordon, M.P., and Nester, E.W. (1986). The virD operon of Agrobacterium tumefaciens encodes a site-specific endonuclease. Cell 47, 471-477. Yuan, Q., Carle, A., Gao, C., Sivanesan, D., Aly, K.A., Hoppner, C., Krall, L., Domke, N., and Baron, C. (2005). Identification of the VirB4-VirB8-VirB5-VirB2 pilus assembly sequence of type IV secretion systems. J Biol Chem 280, 26349-26359. Zaenen, I., Van Larebeke, N., Van Montagu, M., and Schell, J. (1974). Supercoiled circular DNA in crown-gall inducing Agrobacterium strains. J Mol Biol 86, 109-127. Zambryski, P., Joos, H., Genetello, C., Leemans, J., Montagu, M.V., and Schell, J. (1983). Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity. EMBO J 2, 2143-2150. Zhu, Y., Nam, J., Humara, J.M., Mysore, K.S., Lee, L.Y., Cao, H., Valentine, L., Li, J., Kaiser, A.D., Kopecky, A.L., Hwang, H.H., Bhattacharjee, S., Rao, P.K., Tzfira, T., Rajagopal, J., Yi, H., Veena, Yadav, B.S., Crane, Y.M., Lin, K., Larcher, Y., Gelvin, M.J., Knue, M., Ramos, C., Zhao, X., Davis, S.J., Kim, S.I., Ranjith-Kumar, C.T., Choi, Y.J., Hallan, V.K., Chattopadhyay, S., Sui, X., Ziemienowicz, A., Matthysse, A.G., Citovsky, V., Hohn, B., and Gelvin, S.B. (2003). Identification of Arabidopsis rat mutants. Plant Physiol 132, 494-505. Zimmermann, P., Hirsch-Hoffmann, M., Hennig, L., and Gruissem, W. (2004). GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136, 2621-2632. Zupan, J., Hackworth, C.A., Aguilar, J., Ward, D., and Zambryski, P. (2007). VirB1* promotes T-pilus formation in the vir-Type IV secretion system of Agrobacterium tumefaciens. J Bacteriol 189, 6551-6563.
土壤農桿菌(Agrobacterium tumefaciens)為一植物病原菌。於感染時會將菌體內Ti質體(tumor-inducing plasmid)上的一段特定DNA片段(T-DNA,transferred-DNA)及Vir蛋白質(virulence protein)轉移進入植物細胞內,T-DNA則會嵌入植物的染色體中,造成植物產生腫瘤(crown gall),進而影響植物的生長。農桿菌利用由一穿膜的蛋白質複合體及T線毛所組成的第四型分泌系統(T4SS,type IV secretion system),將單股的T-DNA及Vir蛋白質運送至植物細胞內。T線毛是由VirB2、VirB5及VirB7蛋白質所組成。為了進一步瞭解T線毛是如何參與在農桿菌的感染過程中,本研究針對可與VirB2結合的二個植物蛋白質BTI2(RTNLB2)及BTI3(RTNLB4)進行更深入的研究。實驗結果顯示rtnlb2-2及rtnlb4-3阿拉伯芥突變株,較不易被農桿菌感染。當RTNLB4大量表現於轉殖植物時,則可增加其被農桿菌轉殖的效率。由此得知RTNLB2及RTNLB4,皆有參與在農桿菌轉殖植物的過程中。於阿拉伯芥中共有15個RTNLB基因,但對於其功能還未有深入地瞭解。使用生物晶片實驗結果所累積的資料庫得知,多數的RTNLB基因可普遍表現於植物的各個組織器官中。另外,當植物細胞受到環境逆境及賀爾蒙處理時,多數的RTNLB基因可受其誘導或抑制基因的表現量。由此推測RTNLB蛋白質對於植物生長及發育相當重要。但RTNLB蛋白質於植物中所扮演的角色為何,仍須進一步的分析和研究。

The Agrobacterium tumefaciens is a plant pathogen. It causes crown gall disease on plants by transferring its T-DNA (transferred DNA) from the Ti (tumor-inducing) plasmid into plant cells and integrating into the plant chromosome. The A. tumefaciens utilizes the type IV secretion system (T4SS) that includes a transmembrane protein complex and a filament structure, T-pilus, to transfer virulence proteins and the single strand T-DNA into plant cells. The T-pilus is composed of VirB2, VirB5, and VirB7 proteins. In order to understand how the T-pilus involved in the A. tumefaciens infection process, two of the VirB2-interacting proteins, BTI2 (RTNLB2) and BTI3 (RTNLB4), in plants were further characterized in this study. Two Arabidopsis T-DNA insertion mutants, rtnlb2-2 and rtnlb4-3, are resistant to Agrobacterium-mediated transformation process. RTNLB4 over-expression transgenic plants also show higher transformation efficiencies. These data further support that both RTNLB2 and RTNLB4 are involved in A. tumefaciens infection process. There are 15 RTNLB genes in Arabidopsis, and their functions in plant growth and development remain unknown so far. Results collected from various microarray analyses show that most of the RTNLB genes ubiquitously expressed in various tissues, including roots, leaves, flowers and so on. Additionally, several of the RTNLB genes are down- or up-regulated by environmental stresses and hormone treatments based on the microarray analysis results, suggesting RTNLBs may play important roles in plants. The possible functions of RTNLBs in plants await further investigations.
其他識別: U0005-1912200819381700
Appears in Collections:生命科學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.