Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/22826
標題: 探討體細胞核轉置動物之銘印基因上位遺傳異常修飾作用
Epigenetic Aberration of Imprinting Genes in Somatic Nuclear Transferred Cloning Bovine Genomes
作者: 林巧絜
Lin, Chiao-Chieh
關鍵字: Imprinting Genes;探討體細胞核轉置動物;Somatic Nuclear Transferred Cloning Bovine;銘印基因
出版社: 生命科學系所
引用: 陸、 參考文獻 沈朋志 (2003)。經由成年體細胞核轉置技術產製轉基因複製家畜之可行性.。國立台灣 大學畜產學系研究所博士論文。 沈志傑 (2005)。複製猪基因體組中銘印基因上遺傳性修飾異常之研究。國立中興大學 生命科學系研究所碩士論文。 黃怡華 (2005)。甲基化CpG 結合功能域蛋白質之核酸序列選殖及其蛋白質之體外表現 與功能分析。國立台灣大學畜產學系研究所碩士論文。 Ainscough, J. F., R. M. John, et al. (2000). "A skeletal muscle-specific mouse Igf2 repressor lies 40 kb downstream of the gene." Development 127(18): 3923-30. Barlow, D. P. (1995). "Gametic imprinting in mammals." Science 270(5242): 1610-3. Bartolomei, M. S., S. Vigneau, et al. (2008). "H19 in the pouch." Nat. Genet. 40(8): 932-933. Baylin, S. B., S. A. Belinsky, et al. (2000). "Aberrant methylation of gene promoters in cancer---concepts, misconcepts, and promise." J. Natl. Cancer. Inst. 92(18): 1460-1. Bell, A. C. and G. Felsenfeld (2000). "Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene." Nature 405(6785): 482-5. Bestor, T. H. (2000). "The DNA methyltransferases of mammals." Hum. Mol. Genet. 9(16): 2395-402. Bird, A. (2002). "DNA methylation patterns and epigenetic memory." Genes Dev. 16(1): 6-21. Birger, Y., R. Shemer, et al. (1999). "The imprinting box of the mouse Igf2r gene." Nature 397(6714): 84-8. Blasco, M. A. (2002). "Telomerase beyond telomeres." Nat. Rev. Cancer. 2(8): 627-33. Boiani, M., S. Eckardt, et al. (2002). "Oct4 distribution and level in mouse clones: consequences for pluripotency." Genes Dev. 16(10): 1209-19. Bourc''his, D., D. Le Bourhis, et al. (2001). "Delayed and incomplete reprogramming of chromosome methylation patterns in bovine cloned embryos." Curr. Biol. 11(19): 1542-6. Byrne, J. A., S. Simonsson, et al. (2003). "Nuclei of adult mammalian somatic cells are directly reprogrammed to oct-4 stem cell gene expression by amphibian oocytes." Curr. Biol. 13(14): 1206-13. Campbell, K. H., J. McWhir, et al. (1996). "Sheep cloned by nuclear transfer from a cultured cell line." Nature 380(6569): 64-6. Cedar, H. and G. L. Verdine (1999). "Gene expression. The amazing demethylase." Nature 397(6720): 568-9. Cervoni, N., S. Bhattacharya, et al. (1999). "DNA demethylase is a processive enzyme." J Biol. Chem. 274(13): 8363-6. 74 Cezar, G. G., M. S. Bartolomei, et al. (2003). "Genome-wide epigenetic alterations in cloned bovine fetuses." Biol. Reprod. 68(3): 1009-14. Chambers, I., D. Colby, et al. (2003). "Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells." Cell 113(5): 643-55. Chan, A. W., T. Dominko, et al. (2000). "Clonal propagation of primate offspring by embryo splitting." Science 287(5451): 317-9. Chung, Y. G., S. Ratnam, et al. (2003). "Abnormal regulation of DNA methyltransferase expression in cloned mouse embryos." Bio. Reprod. 69(1): 146-53. Davis, T. L., G. J. Yang, et al. (2000). "The H19 methylation imprint is erased and re-established differentially on the parental alleles during male germ cell development." Hum. Mol. Genet. 9(19): 2885-94. De La Fuente, R., A. Hahnel, et al. (1999). "X inactive-specific transcript (Xist) expression and X chromosome inactivation in the preattachment bovine embryo." Biol. Reprod. 60(3): 769-75. de Lange, T. (2002). "Protection of mammalian telomeres." Oncogene 21(4): 532-40. Dean, W., F. Santos, et al. (2003). "Epigenetic reprogramming in early mammalian development and following somatic nuclear transfer." Semin Cell Dev. Biol. 14(1): 93-100. Dean, W., F. Santos, et al. (2001). "Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos." Proc. Natl. Acad. Sci. U S A 98(24): 13734-8. Dindot, S. V., P. W. Farin, et al. (2004). "Epigenetic and Genomic Imprinting Analysis in Nuclear Transfer Derived Bos gaurus/Bos taurus Hybrid Fetuses." Biol. Reprod. 71(2): 470-478. Engemann, S., M. Strodicke, et al. (2000). "Sequence and functional comparison in the Beckwith-Wiedemann region: implications for a novel imprinting centre and extended imprinting." Hum. Mol. Genet. 9(18): 2691-706. Epstein, C. J., S. Smith, et al. (1978). "Both X chromosomes function before visible X-chromosome inactivation in female mouse embryos." Nature 274(5670): 500-3. Falls, J. G., D. J. Pulford, et al. (1999). "Genomic imprinting: implications for human disease." Am. J. Pathol. 154(3): 635-47. Fedoriw, A. M., P. Stein, et al. (2004). "Transgenic RNAi reveals essential function for CTCF in H19 gene imprinting." Science 303(5655): 238-40. Feil, R., J. Walter, et al. (1994). "Developmental control of allelic methylation in the imprinted mouse Igf2 and H19 genes." Development 120(10): 2933-43. Fowden, A. L., C. Sibley, et al. (2006). "Imprinted Genes, Placental Development and Fetal Growth." Hormone Research 65: 50-58. Frommer, M., L. E. McDonald, et al. (1992). "A genomic sequencing protocol that yields a 75 positive display of 5-methylcytosine residues in individual DNA strands." Proc. Natl. Acad. Sci. U S A 89(5): 1827-31. Grossniklaus, U., C. Spillane, et al. (2001). "Genomic imprinting and seed development: endosperm formation with and without sex." Curr. Opin. Plant. Biol. 4(1): 21-7. Haig, D. and C. Graham (1991). "Genomic imprinting and the strange case of the insulin-like growth factor II receptor." Cell 64(6): 1045-6. Hao, Y., T. Crenshaw, et al. (1993). "Tumour-suppressor activity of H19 RNA." Nature 365(6448): 764-767. Hark, A. T., C. J. Schoenherr, et al. (2000). "CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus." Nature 405(6785): 486-9. Heard, E., P. Clerc, et al. (1997). "X-chromosome inactivation in mammals." Annu. Rev. Genet .31: 571-610. Hoppe, P. C. and K. Illmensee (1982). "Full-term development after transplantation of parthenogenetic embryonic nuclei into fertilized mouse eggs." Proc. Natl. Acad. Sci. U S A 79(6): 1912-6. Horike, S., K. Mitsuya, et al. (2000). "Targeted disruption of the human LIT1 locus defines a putative imprinting control element playing an essential role in Beckwith-Wiedemann syndrome." Hum. Mol. Genet. 9(14): 2075-83. Howell, C. Y., A. L. Steptoe, et al. (1998). "cis-Acting signal for inheritance of imprinted DNA methylation patterns in the preimplantation mouse embryo." Mol. Cell. Biol. 18(7): 4149-56. Howlett, S. K. and W. Reik (1991). "Methylation levels of maternal and paternal genomes during preimplantation development." Development 113(1): 119-27. Hsieh, C. L. (2000). "Dynamics of DNA methylation pattern." Curr. Opin. Genet. Dev. 10(2): 224-8. Humpherys, D., K. Eggan, et al. (2002). "Abnormal gene expression in cloned mice derived from embryonic stem cell and cumulus cell nuclei." Proc. Natl. Acad. Sci. U S A 99(20): 12889-12894. Humpherys, D., K. Eggan, et al. (2001). "Epigenetic Instability in ES Cells and Cloned Mice." Science 293(5527): 95-97. Huntriss, J., M. Hinkins, et al. (2004). "Expression of mRNAs for DNA methyltransferases and methyl-CpG-binding proteins in the human female germ line, preimplantation embryos, and embryonic stem cells." Mol. Reprod. Dev. 67(3): 323-36. Illmensee, K. and P. C. Hoppe (1981). "Nuclear transplantation in Mus musculus: developmental potential of nuclei from preimplantation embryos." Cell 23(1): 9-18. Jackson-Grusby, L., C. Beard, et al. (2001). "Loss of genomic methylation causes p53-dependent apoptosis and epigenetic deregulation." Nat. Genet. 27(1): 31-9. 76 Jaenisch, R. and D. Jahner (1984). "Methylation, expression and chromosomal position of genes in mammals." Biochim. Biophys. Acta. 782(1): 1-9. Jones, P. A. and D. Takai (2001). "The role of DNA methylation in mammalian epigenetics." Science 293: 1068 - 70. Jones, P. L., G. J. Veenstra, et al. (1998). "Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription." Nat. Genet. 19(2): 187-91. Kaffer, C. R., A. Grinberg, et al. (2001). "Regulatory mechanisms at the mouse Igf2/H19 locus." Mol. Cell. Biol. 21(23): 8189-96. Kafri, T., M. Ariel, et al. (1992). "Developmental pattern of gene-specific DNA methylation in the mouse embryo and germ line." Genes Dev. 6(5): 705-14. Kang, Y.-K., D.B. Koo, et al. (2001). "Aberrant methylation of donor genome in cloned bovine embryos." Nat. Genet. 28: 173-177. Kang, Y. K., D. B. Koo, et al. (2001). "Aberrant methylation of donor genome in cloned bovine embryos." Nat. Genet. 28(2): 173-7. Kato, Y. and H. Sasaki (2005). "Imprinting and looping: epigenetic marks control interactions between regulatory elements." Bioessays 27(1): 1-4. Kawasaki, H. and K. Taira (2004). "Induction of DNA methylation and gene silencing by short interfering RNAs in human cells." Nature 431(7005): 211-7. Kohda, T., K. Inoue, et al. (2005). "Variation in Gene Expression and Aberrantly Regulated Chromosome Regions in Cloned Mice." Biol. Reprod. 73(6): 1302-1311. Kono, T., Y. Sotomaru, et al. (1993). "Development of androgenetic mouse embryos produced by in vitro fertilization of enucleated oocytes." Mol. Reprod. Dev. 34(1): 43-6. Labosky, P. A., D. P. Barlow, et al. (1994). "Mouse embryonic germ (EG) cell lines: transmission through the germline and differences in the methylation imprint of insulin-like growth factor 2 receptor (Igf2r) gene compared with embryonic stem (ES) cell lines." Development 120(11): 3197-204. Lan, Y., C.-P. Pascale, et al. (2005). "Expression of imprinted genes is aberrant in deceased newborn cloned calves and relatively normal in surviving adult clones." Mol. Reprod. Dev.71(4): 431-438. Lewis, A. and A. Murrell (2004). "Genomic imprinting: CTCF protects the boundaries." Curr. Biol. 14(7): R284-6. Li, C., Y. Bin, et al. (2008). "Genetic Imprinting of H19 and IGF2 in Domestic Pigs (Sus scrofa)." Animal Biotechnology 19(1): 22 - 27. Li, E. (2002). "Chromatin modification and epigenetic reprogramming in mammalian development." Nat. Rev. Genet. 3(9): 662-73. Li, S., Y. Li, et al. (2005). "Aberrant gene expression in organs of bovine clones that die within two days after birth." Biol. Reprod. 72: 258 - 65. 77 Li, X., D. Amarnath, et al. (2006). "Analysis of Development-Related Gene Expression in Cloned Bovine Blastocysts with Different Developmental Potential." Cloning and Stem Cells 8(1): 41-50. Lin, L., Q. Li, et al. (2008). "Aberrant epigenetic changes and gene expression in cloned cattle dying around birth." BMC Dev. Biol. 8(1): 14. Liu, J.-H., S. Yin, et al. (2008). "Aberrant DNA methylation imprints in aborted bovine clones." Mol. Reprod. Dev.75 (4): 598-607. Long, J.-E. and X. Cai (2007). "Igf-2r expression regulated by epigenetic modification and the locus of gene imprinting disrupted in cloned cattle." Gene 388(1-2): 125-134. Lyko, F., B. H. Ramsahoye, et al. (2000). "DNA methylation in Drosophila melanogaster." Nature 408(6812): 538-40. Masahito, O., G. Hiroshi, et al. (2006). "Early embryonic death-associated changes in genome-wide gene expression profiles in the fetal placenta of the cow carrying somatic nuclear-derived cloned embryo." Mol. Reprod. Dev. 73(4): 404-409. Maser, R. S. and R. A. DePinho (2002). "Keeping telomerase in its place." Nat. Med. 8(9): 934-6. Mayer, W., A. Niveleau, et al. (2000). "Demethylation of the zygotic paternal genome." Nature 403(6769): 501-2. McEachern, M. J., D. H. Underwood, et al. (2002). "Dynamics of telomeric DNA turnover in yeast." Genetics 160(1): 63-73. Mette, M. F., W. Aufsatz, et al. (2000). "Transcriptional silencing and promoter methylation triggered by double-stranded RNA." EMBO J. 19(19): 5194-201. Mitsui, K., Y. Tokuzawa, et al. (2003). "The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells." Cell 113(5): 631-42. Monk, M., M. Boubelik, et al. (1987). "Temporal and regional changes in DNA methylation in the embryonic, extraembryonic and germ cell lineages during mouse embryo development." Development 99(3): 371-82. Monk, M. and M. I. Harper (1979). "Sequential X chromosome inactivation coupled with cellular differentiation in early mouse embryos." Nature 281(5729): 311-3. Morgan, H. D., F. Santos, et al. (2005). "Epigenetic reprogramming in mammals." Hum. Mol. Genet. 14(Spec No 1): R47 - 58. Ohlsson, R., R. Renkawitz, et al. (2001). "CTCF is a uniquely versatile transcription regulator linked to epigenetics and disease." Trends. Genet. 17(9): 520-7. Okano, M., D. W. Bell, et al. (1999). "DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development." Cell 99(3): 247-257. Oswald, J., S. Engemann, et al. (2000). "Active demethylation of the paternal genome in the mouse zygote." Curr. Biol. 10(8): 475-8. 78 Pandey, R. R., M. Ceribelli, et al. (2004). "NF-Y regulates the antisense promoter, bidirectional silencing, and differential epigenetic marks of the Kcnq1 imprinting control region." J. Biol. Chem. 279(50): 52685-93. Pesce, M. and H. R. Scholer (2001). "Oct-4: gatekeeper in the beginnings of mammalian development." Stem Cells 19(4): 271-8. Ray, P. F., R. M. Winston, et al. (1997). "XIST expression from the maternal X chromosome in human male preimplantation embryos at the blastocyst stage." Hum. Mol. Genet. 6(8): 1323-7. Reik, W. and A. Murrell (2000). "Genomic imprinting: Silence across the border." Nature 405(6785): 408-409. Reik, W. and J. Walter (2001). "Evolution of imprinting mechanisms: the battle of the sexes begins in the zygote." Nat. Genet. 27(3): 255-6. Reik, W. and J. Walter (2001). "Genomic imprinting: parental influence on the genome." Nat Rev. Genet. 2(1): 21-32. Renard, J. P., S. Chastant, et al. (1999). "Lymphoid hypoplasia and somatic cloning." Lancet 353(9163): 1489-91. Robertson, K. D. and P. A. Jones (2000). "DNA methylation: past, present and future directions." Carcinogenesis 21(3): 461-7. Russo, G. L., K. Kyozuka, et al. (1996). "Maturation promoting factor in ascidian oocytes is regulated by different intracellular signals at meiosis I and II." Development 122(7): 1995-2003. Santos, F., B. Hendrich, et al. (2002). "Dynamic reprogramming of DNA methylation in the early mouse embryo." Dev. Biol. 241(1): 172-82. Sasaki, H., K. Ishihara, et al. (2000). "Mechanisms of Igf2/H19 imprinting: DNA methylation, chromatin and long-distance gene regulation." J. Biochem. 127(5): 711-715. Sasaki, H., P. A. Jones, et al. (1992). "Parental imprinting: potentially active chromatin of the repressed maternal allele of the mouse insulin-like growth factor II (Igf2) gene." Genes Dev. 6(10): 1843-56. Schnieke, A. E., A. J. Kind, et al. (1997). "Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts." Science 278(5346): 2130-3. Schrader, A. D., M. J. Iqbal, et al. (2003). "Gene expression in cloned bovine fetal liver." Clon. Stem Cells 5(1): 63-69. Silva, D., M. Venihaki, et al. (2006). "Igf2 deficiency results in delayed lung development at the end of gestation." Endocrinology 147(12): 5584-5591. Sleutels, F. and D. P. Barlow (2001). "Investigation of elements sufficient to imprint the mouse Air promoter." Mol. Cell. Biol. 21(15): 5008-17. Sleutels, F., R. Zwart, et al. (2002). "The non-coding Air RNA is required for silencing autosomal imprinted genes." Nature 415(6873): 810-3. 79 Srivastava, M., E. Frolova, et al. (2003). "Imprint control element-mediated secondary methylation imprints at the Igf2/H19 locus." J. Biol. Chem. 278(8): 5977-83. Stoger, R., P. Kubicka, et al. (1993). "Maternal-specific methylation of the imprinted mouse Igf2r locus identifies the expressed locus as carrying the imprinting signal." Cell 73(1): 61-71. Surani, M. A. (1998). "Imprinting and the initiation of gene silencing in the germ line." Cell 93(3): 309-12. Surani, M. A., S. C. Barton, et al. (1986). "Nuclear transplantation in the mouse: heritable differences between parental genomes after activation of the embryonic genome." Cell 45(1): 127-36. Taeko, N. and Y. Masayoshi (2005). "Overexpression of regucalcin suppresses apoptotic cell death in cloned normal rat kidney proximal tubular epithelial NRK52E cells: Change in apoptosis-related gene expression." J. of Cell. Biochem. 96(6): 1274-1285. Tamada, H. and N. Kikyo (2004). "Nuclear reprogramming in mammalian somatic cell nuclear cloning." Cytogenet Genome Res. 105(2-4): 285-91. Teng, S. C. and V. A. Zakian (1999). "Telomere-telomere recombination is an efficient bypass pathway for telomere maintenance in Saccharomyces cerevisiae." Mol. Cell. Biol. 19(12): 8083-93. Thorvaldsen, J. L., K. L. Duran, et al. (1998). "Deletion of the H19 differentially methylated domain results in loss of imprinted expression of H19 and Igf2." Genes Dev. 12(23): 3693-702. Varmuza, S. and M. Mann (1994). "Genomic imprinting--defusing the ovarian time bomb." Trends. Genet. 10(4): 118-23. Vittorio, S., G. Luca, et al. (2005). "Cloned pre-implantation mouse embryos show correct timing but altered levels of gene expression." Mol. Reprod. Dev.70(2): 146-154. Wells, D. N., P. M. Misica, et al. (1999). "Production of cloned calves following nuclear transfer with cultured adult mural granulosa cells." Biol. Reprod. 60(4): 996-1005. Wilmut, I., A. E. Schnieke, et al. (1997). "Viable offspring derived from fetal and adult mammalian cells." Nature 385(6619): 810-3. Wutz, A. and J. Gribnau (2007). "X inactivation Xplained." Curr. Opin. in Genet. Dev. 17(5): 387-393. Xue, F., X. C. Tian, et al. (2002). "Aberrant patterns of X chromosome inactivation in bovine clones." Nat. Genet. 31(2): 216-20. Yoder, J. A., C. P. Walsh, et al. (1997). "Cytosine methylation and the ecology of intragenomic parasites." Trends. Genet. 13(8): 335-40. Young, L. E. and H. R. Fairburn (2000). "Improving the safety of embryo technologies: possible role of genomic imprinting." Theriogenology 53(2): 627-648. 80 Zhu, B., Y. Zheng, et al. (2000). "5-methylcytosine-DNA glycosylase activity is present in a cloned G/T mismatch DNA glycosylase associated with the chicken embryo DNA demethylation complex." Proc. Natl. Acad. Sci. U S A 97(10): 5135-9.
摘要: 
已知哺乳類動物體內,基因體上位修飾再程序化系統存於初級配子細胞與合子細胞內,並於早期胚胎發育過程中,為維繫調控不同胚期之基因功能與表現之關鍵因子。然體細胞核轉置複製技術常伴隨供核細胞之再程序不當調控現象,進而影響其產置效率與複製動物出生前後之存活率。其中部分特定去甲基化因子恐導致組織間基因表現缺失而影響正常生理功能。本篇論文中,其六頭複製牛皆取正常荷蘭母牛之耳朵纖維母細胞為其供核細胞源所產製,惟此等複製牛皆呈極短之生命週期與多重器官嚴重缺失現象。然此等重大缺失是否與銘印基因異常調控有關?本篇論文主要針對胚胎發育過程中,維持胎兒與胎盤正常生長發育之IGF-2與H19兩種銘印基因與主導X染色體失活機制之Xist基因,進行正常牛與複製牛各組織間COBRA分析,並搭配亞硫酸鈉定序檢視各目標片段中,所夾擊之CpG位點DNA甲基化修飾程度。結果顯示,確存有不同複製牛各組織間,不同程度之IGF-2, Xist與H19等基因銘印消逝之異常現象。然若進一步探究複製牛NTG-2之IGF-2, Xist與H19等銘印基因mRNA表現量則發現,IGF-2 與H19廣幅性過表現於肝臟、下大靜脈、耳朵、皮膚與子宮等組織。其中IGF-2於NTG-2之子宮與肝臟組織相較於正常牛者高出約1,200及800倍之多;而H19於NTG-2之肝臟組織甚至較正常牛者高出34,000倍左右。藉由相關試驗證實,相信此等鉅幅過表現之IGF-2與H19,恐與NTG-2多重器官發育缺失有關。縱歸上述,體細胞核轉置複製動物之銘印基因異常DNA甲基化修飾與再程序化調控失序,應是導致其發育不全抑或出生前後高死亡率之主因。

In mammals, genome-wide epigenetic reprogramming systems exist in primordial germ cells and zygote. It plays a crucial role in regulating genome functions at critical stages of embryo development and confers stability of gene expression during mammalian development. Inappropriate reprogramming of donor nuclei in somatic cell resulted in neonatal death and preimplantation defects during animal cloning technique. Specific demethylation events in differentiated tissues could then lead to further changes in gene expression as needed. In this study, six cloned bovines created by ear fibroblast nuclear transfer with short life span and multiple organ defects were used as the experimental materials. We focus on three imprinting genes included two growth factor genes IGF-2, H19 and Xist (X chromosome inactive regulated gene) by combined bisulfite and restriction assay (COBRA). Bisulfite sequencing were also applied to analyze the aberrant CpG sites in different imprinted genes loci in these cloned bovine genomes. Our data show that loss of imprinting (LOI) phenomenon was frequently appeared in IGF-2, Xist and H19 imprinted loci in several tissues of these cloned bovines. Furthermore, we detected the cloned bovine NTG-2 expression of these imprinting genes with quantitative real time PCR (Q-PCR). The data suggested that IGF-2 and H19 are extremely overexpressed in liver, vein, ear, skin and uterus. The IGF-2 mRNA expression in uterus and liver of NTG-2 cow are almost 1,200 and 800 folds compared to WT cow. The H19 expression level in liver of NTG-2 also exhibited a 34,000-fold higher than that of WT cow. According to our research, the extensively overexpression of IGF-2 and H19, probably were the major reason to cause the cloned bovine NTG-2 not only organ defects, but also aberrant embryonic development. In conclusion, the death of clones may be due to aberrant DNA methylation at the loci of imprinting genes and disruption of incompletely reprogrammed after nuclear transfer.
URI: http://hdl.handle.net/11455/22826
其他識別: U0005-0408200912124800
Appears in Collections:生命科學系所

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.