Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2284
DC FieldValueLanguage
dc.contributor劉進興zh_TW
dc.contributor張耀仁zh_TW
dc.contributor黃東雍zh_TW
dc.contributor.advisor林麗章zh_TW
dc.contributor.author李孟原zh_TW
dc.contributor.authorLee, Meng-Yuanen_US
dc.contributor.other中興大學zh_TW
dc.date2010zh_TW
dc.date.accessioned2014-06-05T11:42:53Z-
dc.date.available2014-06-05T11:42:53Z-
dc.identifierU0005-1808200918250700zh_TW
dc.identifier.citation[1] T. B. Lauwers, G. A. Kantor, and R. L. Hollis, “A Dynamically Stable Single-Wheeled Mobile Robot with Inverse Mouse-Ball Drive,” IEEE Int. Conf. Robotics and Automation, pp. 2884-2889, 2006. [2] T. B. Lauwers, G. A. Kantor, and R. L. Hollis, “One is Enough,” 12th Int. Symp. Robotics Research, San Francisco, CA, Oct. 12-15, 2005. [3] 徐嘉隆,“單球驅動機器人之3D建模與控制設計”,國立中興大學機械工程研究所碩士論文,民國九十七年。 [4] D. Stonier, S.-H. Cho, S.-L. Choi, N. S. Kuppuswamy, and J.-H. Kim, “Nonlinear Slip Dynamics For an Omniwheel Mobile Robot Platform,” IEEE Int. Conf. Robotics and Automation, Roma, Italy, pp. 2367-2372, April 2007. [5] D. Wang and C. B. Low, “Modeling and Analysis of Skidding and Slipping in Wheeled Mobile Robots: Control Design Perspective,” IEEE Trans. on Robotics, Vol. 24, No. 3, pp. 676-687, June 2008. [6] H. O. Wang, K. Tanaka, and M. F. Griffin, “An Approach to Fuzzy Control of Nonlinear Systems: Stability and Design Issues,” IEEE Trans. on Fuzzy Systems, Vol. 4, No. 1, pp.14-23, Feb. 1996. [7] K. Tanaka, and H. O. Wang, Fuzzy Control Systems Design and Analysis, Addison-Wesley, Reading, NY, 2001. [8] C.-C. Shing, P.-L. Hsu, and S.-S. Yeh, “T-S Fuzzy Path Controller Design for the Omnidirectional Mobile Robot,” 32nd Annual Conf. on IEEE Industrial Electronics, pp. 4142-4146, Nov. 6-10, 2006. [9] C.-C. Sun, H.-Y. Chung, and W.-J. Chang, “Design the T-S Fuzzy Controller for a Class of T-S Fuzzy Models via Genetic Algorithm,” IEEE Int. Conf. on Fuzzy Systems, Vol.1, pp. 278-283, May 12-17, 2002. [10] 黃仕璟,“三軸磁浮軸承之模糊建模與強健適應控制-使用線性矩陣不等式法”,國立中興大學機械工程學系博士論文,民國九十三年。 [11] 莊仁豪,“全向式三輪機器人之動力學模式與適應控制設計”,國立中興大學機械工程學系碩士論文,民國九十七年。 [12] 廖秉德,“含磁滯估測器之三軸壓電致動平台穩定適應模糊控制設計”,國立中興大學機械工程學系碩士論文,民國九十七年。 [13] J. J. Craig, Introduction to Robotics: Mechanics and Control, 3rd Ed., Addison-Wesley, Reading, MA, 2005. [14] L. A. Zadeh, “Fuzzy Sets,” Information and Control, Vol. 8, pp. 338-353, 1965. [15] L.-X. Wang, A Course in Fuzzy Systems and Control, Prentice Hall, 1997.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/2284-
dc.description.abstract本論文針對能在地面往隨意方向前進的單球驅動機器人,推導其完整解析動力學模式及近似TS模糊模式,並提出其TS模糊控制律和非線性穩定適應模糊控制律。考慮三個滾柱和圓球間,以及圓球和地面間均有滑動速度和摩擦力的影響,於建立完整的動能、位能表示式後,利用拉格蘭奇(Lagrange)方程式推導出整體機器人系統的數學模式。本文TS模糊控制器的設計,乃使用並行分散補償 (PDC, parallel distributed compensation) 方式,以Lyapunov穩定理論推導能求解控制增益的線性矩陣不等式(LMI)。另外,再根據可線性化部分的動力模式,利用Lyapunov穩定理論推導單球驅動機器人的非線性穩定適應模糊控制律,其中包含非線性阻尼項和模糊近似器,以及含 修正項之參數調適律。最後以電腦模擬印證所提控制律確能讓機器人同時達到隨意軌跡追蹤和直立桿維持平衡直立不倒之控制目的。zh_TW
dc.description.abstractIn this thesis, we consider the modeling and control for a ballbot that can freely move in any direction within range. Consider that there exist slipping, skidding, and friction both between the three rollers and the ball, and between the ball and the ground. After building the complex kinetic energy and potential energy expressions, the analytical 3D dynamic equations are derived via Lagrange's equations. Then, an approximate TS fuzzy model is derived, and the corresponding TS fuzzy controller is synthesized based on PDC concept via Lyapunov stability theory. The derived LMI's can be solved using the LMI control toolbox. Furthermore, a nonlinear stable adaptive fuzzy controller is derived based on the linearizable part model via Lyapunov method. The proposed nonlinear adaptive control law includes a nonlinear damping term and a fuzzy function approximator using a parameter adaptation law with -modification. Finally, computer simulations are used to illustrate the effectiveness of the suggested control strategies using a desired motion trajectory generated by the cubic spline interpolation method.en_US
dc.description.tableofcontents中文摘要........................i Abstract....................... ii 誌謝......................... iii 目錄......................... iv 圖目錄........................ vii 符號說明....................... xiii 第一章 緒論..................... 1 1.1 研究動機..................... 1 1.2 文獻回顧..................... 2 1.3 論文大綱..................... 3 第二章 考慮滑動之單球驅動機器人3D非線性運動方程 式推導.....................5 2.1 機器人基本位置向量和運動量推導.......... 7 2.2 廣義力矩向量 和速度運動學方程式推導..........................16 2.3 含滑動量之3D(three-dimensional)非線性運動方程式推導..........................23 第三章 具隨意移動能力之單球驅動機器人TS模糊與非線性 穩定適應控制設計............... 33 3.1 單球驅動機器人之TS模糊控制器設計....... 33 3.2 單球驅動機器人之適應控制策略設計........ 48 3.2.1 系統之公稱控制律推導........... 48 3.2.2 考慮不確定性影響之非線性阻尼項推導.... 55 3.2.3 考慮不確定性影響之控制律推導與穩定性證明 58 第四章 電腦模擬與結果討論.......... .... 67 4.1 行進軌跡規劃................... 67 4.2 單球驅動機器人參數之選定............ 71 4.3 TS模糊控制律與反向步進公稱控制律之電腦模擬 結果比較與討論.................... 73 4.3.1 系統與控制律參數選定.............. 73 4.3.2 模擬結果與討論................. 74 4.4 反向步進公稱控制律與含補償不確定項之適應控制 律之電腦模擬結果比較與討論.............. 84 4.4.1模擬結果與討論................ 85 第五章 結論與建議.................. 124 參考文獻....................... 126 附錄......................... 128zh_TW
dc.language.isoen_USzh_TW
dc.publisher機械工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1808200918250700en_US
dc.subjectTSen_US
dc.subjectTS模糊zh_TW
dc.subjectFuzzyen_US
dc.subjectControlen_US
dc.subjectAdaptiveen_US
dc.subjectUncertaintyen_US
dc.subject模糊控制zh_TW
dc.subject適應控制zh_TW
dc.subject不確定性zh_TW
dc.title考慮滑動之單球驅動機器人建模與TS模糊及適應模糊控制zh_TW
dc.titleModeling, Stable TS Fuzzy and Adaptive Fuzzy Controls for a Ballbot with Slip Effecten_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1en_US-
item.grantfulltextnone-
Appears in Collections:機械工程學系所
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.