Please use this identifier to cite or link to this item:
標題: 搪孔刀具加工時動態響應之探討
Studies of Dynamic Responses of Boring Bar in Machining
作者: 李官穎
Li, Guna-Ying
關鍵字: boring;搪孔;dynamic responses;cutting;動態響應;切削
出版社: 機械工程學系所
引用: [1] C. Mei, “Active Regenerative Chatter Suppression During Boring Manufacturing Process,’’ Robotics and Computer-Integrated Manufacturing, pp.153-158 (2005). [2] 莊集黃, “減振搪刀桿之可行性研究,” 碩士論文,中興大學機械研究所 (2005). [3] H. Moradi, F. Bakhtiari-Nejad and M. R. Movahhedy, “Tuneable Vibration Absorber Design to Suppress Vibrations : An Application in Boring Manufacturing Process,’’ Journal of Sound and Vibration, pp.1-16 (2008). [4] G.-L Chern and Jia-Ming Liang, “Study on Boring and Drilling with Vibration Cutting,”Machine Tools & Vibration, pp. 133-140 (2007). [5] 呂智偉, “可調式減振刀桿之性能研究,” 碩士論文,中興大學機械研究所 (2008). [6] Shuzo Nagano, Takayuki Koizumi, Toru Fujii, Nobutaka Tsujiuchi, Hiroki Ueda and Kobe Steel, “Development of a Composite Boring Bar,” Composite Structures, pp. 531-539 (1997). [7] C. D. Kim and C. W. Bert, “Critical Speed Analysis of Laminated Composite , Hollow Drive shafts,”Composites Engineering, pp. 633-643 (1993) [8] C. W. Bert, “The Effect of Bending-Twisting Coupling on the Critical Speed of a Driveshafts,” Proceeding, 6th Japan-U.S. Conference on Composites Materials, Orlando, FL, 1992, Technomic Lancaster, PA, pp. 29-36 (1993). [9] C. W. Bert and C. D. Kim, “Whirling of Composite - Material Driveshafts Including Bending-Twisting Coupling and Transverse Shear Deformation,” Journal of Vibration and Acoustics, Vol. 117, pp. (1995) [10] Min-Yung Chang, Jeng-Keag Chen and Chin-Yung Chang, “A Simple Spinning Laminated Composite Shaft Modal,”Soilds and Structures, pp. 637-662 (2004) [11] 陳鄭貴, “複合材料旋轉軸之動態響應與其振動控制之探討,” 碩士論文,中興大學機械研究所 (1998). [12] 蔡家偉, “複合材料旋轉軸-圓盤系統振動特性之探討,” 碩士論文,中興大學機械研究所 (2005). [13] 蘇哲宏, “複合材料軸-樑系統振動特性之研究,” 碩士論文,中興大學機械研究所 (2007). [14] J. N. Reddy, An Introduction to Finite Element Method, McGraw-Hill (1984). [15] Yusuf Altintas, Manufacturing Automation:metal Cutting Mechanics,Machine Tool Vibration,and CNC Design, New York : Cambridge University Press ( 2000). [16] Y. Altintas and M.Weck,”Chatter Stability of Metal Cutting and Grinding,” CIRP Annals – Manufacturing Technology, Vol.53, Issue2 ,pp. 619-642(2004). [17] N. Z. Yussefian, B. Moetakef-Imani and H. EI - Mounayri, “The Prediction of Cutting Force for Boring Process,” International Journal of Machine Tools & Manufacture, pp. 1387-1394 (2008). [18] Ismail Lazoglu, Fuat Atabey, and Yusuf Altintas, “Dynamics of Boring Process : Part III-Time Domain Modeling,” Machine Tools & Vibration, pp. 1567-1576 (2002). [19] Evita Edhi and Tetsutaro Hoshi, “ Stability of High Frequency Machining Vibration by Extended Chatter Modal,” Precision Enegineering, pp. 204-213 (2002). [20] Dai Gil Lee, Hui Yun Hwang and Jin Kook Kim, “Design and Manufacture of a Carbon Fiber Epoxy Rotating Boring Bar,”Composite Structures, pp. 115-124 (2003). [21] Marko Jorkama and Raimo von Hertzen, “Optimal Dynamic Absorber for a Rotating Rayleigh Beam,” Journal of Sound and Vibration, pp. 653-664 (1998). [22] Evita Edhi and Tetsutaro Hoshi, “ Stabilization of High Frequency Chatter Vibration in Fine Boring by Friction Damper,” Precision Enegineering, pp. 224-234 (2001). [23] Y. S. Liao and Y. C. Young, “A New On-Line Spindle Speed Regulation Strategy for Chatter Control,”Tools Manufact, pp. 651-660 (1996).
本文主要目的為建立一撓性旋轉軸系統的有限元素模式用以模擬搪孔刀具之加工。所探討的軸系統包括等向性實心軸、等向性中空軸和等向性內含吸振撓性樑之中空軸,以及複材軸。推導運動方程時,選擇固定於旋轉軸以及嵌入其內之懸臂樑之動座標來描述其變形,假設此兩者的位移場,而各自求出其動能與應變能以及兩者間連結彈簧的位能,並求出主軸與吸振樑間阻尼器之阻力以及作用於主軸上切削力等所做的虛功。接著採用漢米爾頓原理(Hamilton’s principle)配合有限元素法,推導出定轉速下含嵌入吸振樑之轉軸系統的運動方程式,其次利用切削時軸系統之閉迴路轉換函數求得切削過程的穩定性邊界。為驗證此穩定性邊界,本文採用Newmark-

The main goal of the thesis is to develop a finite element model of the spinning shafts for studying the vibration of the boring bar during machining process. The shaft systems being investigated include the isotropic solid shaft, the isotropic hollow shaft and the isotropic hollow shaft with a beam absober, as well as the composite shaft. To derive the equation of motion, the rotating reference frames fixed in the shaft are chosen to describe then elastic displacement fields. The kinetic and strain energies of the system are then derived. With these energy experessions and also considering the work done by the viscous damping forces existing between the shaft and the beam, and the cutting force, the Hamilton's principle is then apply together with the finite element method to derive the equation of motions of the system. The closed-loop transfer function of the shaft system during the boring process are used to determine the stability lobes. To verify the stability lobes, being found using one degree-of-freedom system the Newmark-
其他識別: U0005-1808200919062400
Appears in Collections:機械工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.