Please use this identifier to cite or link to this item:
標題: 由群集數量與取食速率探討樹麻雀(Passer montanus)於水稻田的取食模式
Foraging model of Tree Sparrows(Passer montanus)in the paddy rice field- A study based on the foraging flock size and food uptake rate
作者: 王智強
Wang, Chih-Chiang
關鍵字: tree sparrow;樹麻雀(Passer montanus);Passer montanus;flock size;organic rice field;群集;有機稻田
出版社: 生命科學系所
引用: 方薏菁。2007。嘉南平原稻作區的鳥類群聚與鳥害探討。國立嘉義大學生物資源學系研究所碩士論文。嘉義市。 王銀波、趙震慶。1995。有機農業之意義及有關試驗之檢討。有機質肥料合理施用技術研討會專刊 第050號。臺灣省農業試驗所。 王銀波。1999。有機農業之由來及定義。有機農業發研討會專刊:1-4 朱汶偵。2008。背景顏色與色差及群體效應對麻雀選擇覓食環境及其覓食行為之影響。國立成功大學生命科學系研究所碩士論文。台南市。 行政院農業委員會動植物防疫檢疫局。2002。植物保護圖鑑系列。臺北市。 何健鎔。1988。台灣田間二種鳥類危害之觀察。啟農雜誌 58: 54-59。 李平全。1998。野鳥對農作物危害之防除。農業世界 180: 56-58。 林文宏。2006。猛禽觀察圖鑑。遠流出版社。台北市。 林孟輝、王雲平。2007。有機水稻產銷經營管理。桃園區農業專訊 62:46-49。 張正賢。1988。稻作學精要。國立編譯管。臺北市。 許富雄。2001。鳥類資源調查的方法。特有生物研究 3: 81-90。 許惠怡。1999。理想自由分佈與豆象產卵選擇。國立臺灣大學昆蟲學研究所碩士論文。臺北市。 陳世雄。1997。穀粒充實期氮素及土壤水分管理對稻米品質之影響。行政院國家科學委員會專題研究計畫成果報告。 陳守泓、陳圭宏、黃俊騰、姚銘輝、李炳和、申雍。2007。全球暖化對臺灣地區水稻生產之影響。全球暖化對台灣稻米產業之影響研討會專刊 pp.63-82。 陳慧娟。1986。中台灣地區麻雀的生物學與繁殖行為研究。東海大學生物學研究所碩士論文。台中市。 劉嘉尚。1991。臺灣地區麻雀球蟲症之研究。國立中興大學獸醫研究所碩士論文。台中市。 鄭作新、賈相剛、傅守三、王益之。1995。麻雀的「益」與「害」~麻雀食性分析的初步報告~。自然雜誌 19: 62-72。 鄭清煥、朱耀沂、黃守宏。2008。臺灣水稻害蟲及防治之演變。動植物防疫檢疫 16: 7-11。 鄭清煥。1978。臺灣一、二期作稻蟲害發生情形及其對產量之影響。臺灣二期作稻低產原因及其解決方法研討會專輯(謝與劉編),行政院國家科學委員會研討會專集(二)pp.191-205。臺北。 鄧耀宗。1978。臺灣二期稻作增產研究--品種與一、二期作產量之關係。中華農業研究 27: 213-222。 羅秋雄。1995。作物施肥手冊 。農委會農糧署。南投。 Beauchamp, G. and B. Livoreil. 1997. The effect of group size on vigilance and feeding rate in spice finches (Lonchra punctulata). Can. J. Zool. 75: 1526-1531 Bednarz, J.C. 1988. Cooperative Hunting Harris'' Hawks (Parabuteo unicinctus). Science 239: 1525 – 1527. Bednekoff, P. A. and S. L. Lima. 2005. Testing for peripheral vigilance: do birds value what they see when not overtly vigilant? Anim. Behav. 69: 1165-1171. Boukhriss, J., S. Selmi, A. Béchet, and S. Nouira. 2007. Vigilance in Greater Flamingos Wintering in Southern Tunisia: Age-Dependent Flock Size Effect. Ethology 113: 377-385. Chapman, C.A., L. J. Chapman1, and R.W. Wrangham. 1995. Ecological constraints on group size: an analysis of spider monkey and chimpanzee subgroups. Behav. Ecol. Sociobiol. 36: 59-70. Coss, R.G., B. McCowan, and U. Ramakrishnan. 2007. Threat-Related Acoustical Differences in Alarm Calls by Wild Bonnet Macaques (Macaca radiata) Elicited by Python and Leopard Models. Ethology 113: 352-367. Dallimer, M. and P. J. Jones. 2002. Migration orientation behaviour of the red-billed quelea Quelea quelea. J. Avian Biol. 33: 89-94. Dias, R. I. 2006. Effects of position and flock size on vigilance and foraging behaviour of the scaled dove Columbina squammata. Behav. Processes 73: 248-252. Doolan, S.P. and D.W. Macdonald. 1997. Breeding and juvenile survival among slender-tailed meerkats (Suricatu suricatta) in the south-western Kalahari: ecological and social influences. J. Zool. 242: 309-327. Dugatkin, L. A. 2004. Principles of Animal Behavior. WW Norton & Company, Inc. Fretwell, S.D. and H.L. Lucas. 1970. On territorial behavior and other factors influencing habitat distribution in birds. Acta Biother. 19: 16-36. Ganas, J. and M.M. Robbins. 2005. Ranging behavior of the mountain gorillas (Gorilla beringei beringei) in Bwindi Impenetrable National Park, Uganda: a test of the ecological constraints model. Behav. Ecol. Sociobiol. 58: 277–288. Gill, F.B. 1995. Ornithology. W. H. Freeman and Company. New York, USA. Gillings, S., A. M. Wilson, G. J. Conway, J. A. Vickery, and R. J. Fuller. 20089. Distribution and abundance of birds and their habitats within the lowland farmland of Britain in winter: Capsule Farmland bird species occurred at low densities and were highly aggregated in a small proportion of available pastures, stubble fields and farmyards. Bird Study 55: 8–22. Giraldeau, L. A. and T. Caraco. 2000. Social foraging theory. Princeton University Press, New Jersey. Glück, E. 1986. Flock size and habitat-dependent food and energy intake of foraging Goldfinches. Oecologia 71: 149-155. Glück, E. 1987a.An experimental study of feeding, vigilance and predator avoidance in a single bird. Oecologia 71: 268-272 Glück, E. 1987b. Benefits and costs of social foraging and optimal flock size in goldfinches (Carduelis carduelis). Ethology 74: 65-79. Goss-Custard, J. D. 1980. Competition for food and interference amongst waders. Ardea 68: 31-52. Goss-Custard, J. D. and S. E. A. le V. dit Durell. 1988. The effect of dominance and feeding method on the intake rates of oystercatchers, Haematopus ostralegus, feeding on mussels. J. Anim. Ecol. 57: 827–844 Gowaty, P.A. and S.P. Hubbell. 2009. Reproductive decisions under ecological constraints: It’s about time. PNAS 106: 10017-10024. Grant, J.W.A. 1993. Whether or not to defend? The influence of resource distribution. Mar. Behav. Physiol. 23: 137-153. Hamilton, W.D. 1971. Geometry for selfish herd. J. Theor. Biol. 31, 295–311. Hammer, Ø., D.A.T. Harper, and P.D. Ryan. 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4: 9. Janson, C.H. and M.L. Goldsmith. 1995. Predicting group size in primates: foraging costs and predation risks. Behav. Ecol. 6:326–336. Johnson, C.A., J. W. A. Grant, and L. A. Giraldeau. 2004. The effect of patch size and competitor number on aggression among foraging house sparrow. Behav. Ecol. 15: 412-418. Johnson, C.A., J. W. A. Grant, and L. A. Giraldeau. 2006. Intensity of interference affects the distribution of house sparrow, Passer domesticus, at food patches. Anim. Behav. 71: 965-970. Johnson, C.A., L. A. Giraldeau, and J. W. A. Grant. 2001. The effect of handing time of interference among house sparrows foraging at different seed densityes. Behaviour 138: 597-614. Kosztolányi, A., T. Székely, I.C. Cuthill, K.T. Yilmaz, and S. Berberoğlu. 2006. Ecological constraints on breeding system evolution: the influence of habitat on brood desertion in Kentish plover. J. Anim. Ecol. 75: 257-265. Macdonald, D. W. 1983. The ecology of carnivore social behaviour. Nature 301: 379 – 384. Maguire, G., D. Ramp, and G. Coulson. 2006. Foraging behaviour and dispersion of eastern grey kangaroos (Macropus giganteus) in an ideal free framework. J. Zool. 268: 261-269. Minitab Inc. 1996. Minitab for Windows, release 11.2. Minitab Inc., State College, Pa. Moody, A.L. and A. I. Houston. 1995. Interference and the ideal free distribution. Anim. Behav. 49: 1065-1072. Anim. Behav. 34: 1222-1242. Morgan, T. and E.F. Juricic. 2007. The effect of predation risk, food abundance, and population size on group size of brown-headed cowbirds (Molothrus ater). Ethology 113: 1173-1184. Parker, G. A. and W.J. Sutherland. 1986. Ideal free distributions when individuals differ in competitive ability: phenotype-limited ideal free models. Anim. Behav. 34: 1222-1242. Pulliam, H.R., 1973. On the advantages of flocking. J. Theor. Biol. 38: 419–422. Ramp, D. and G. Coulson. 2004. Small-scale patch selection and consumer resource dynamics of eastern grey kangaroos. J. Mammal. 85: 1053-1059. Seaby, R.M.H., and P.A. Henderson. 2007. QED Statistics. Hampshire. PISCCES Conservation Ltd. Siriwardena, G. M., D. K. Stevens, G. Q. A. Anderson, J. A. Vickery, N. A. Calbrade, and S. Dodd. 2007. The effect of supplementary winter seed food on breeding populations of farmland birds: evidence from two large-scale experiments. J. Appl. Ecol. 44: 920-932. Siriwardena, G. M., N. A. Calbrade, and J. A. Vickery. 2008. Farmland birds and late winter food: does seed supply fail to meet demand? Ibis 150: 585–595. Siriwardena, G. M., N. A. Calbrade, J. U. Vickery, and W. J. Sutherland. 2006. The effect of the spatial distribution of winter seed food resources on their use by farmland birds. J. Appl. Ecol. 43: 628-639. Slotow, R. and S. I. Rothstein. 1995. Influence of social status, distance from cover, and group size on feeding and vigilance in White-crowned Sparrows. Auk 112: 1024-1031. Summers-Smith J.D. 1995. The Tree Sparrow. The Bath Press. Bath, England. Sundar, K. S. G. 2006. Flock size, density and habitat selection of four large waterbirds species in an agricultural landscape in Utter Pradesh, India: implications for management. Waterbirds 29: 365-374. Sutherland, W. J. 1992. Game theory models of functional and aggregative responses. Oecologia 90: 150-152. Teichroeb, J.A. and P. Sicotte. 2009. Test of the Ecological-Constraints Model on Ursine Colobus Monkeys (Colobus vellerosus) in Ghana. Am. J. Primatol. 71: 49–59. Tourenq, C., S. Aulagnier, L. Durieux, S. Lek, F. Mesléard, A. Johnson, and J. Martin. 2001. Identifying rice fields at risk from damage by the greater flamingo. J. Appl. Ecol. 38: 170-179. Tregenza, T., G. A. Parker, and D. J. Thompson. 1996. Interference and the ideal free distribution: Models and tests. Behav. Ecol. 7: 379–386. Zahavi, A. 1971. The social behaviour of the white wagtail Motacilla alba alba wintering in Israel. Ibis 113: 203-211.
樹麻雀(Passer montanus)為群集(flock)覓食的社會性動物,經常於水稻田穀粒成熟期,群體飛至水稻田取食稻穗,造成農民損失。本研究以水稻田為背景,探討樹麻雀於水稻田的取食模式,希望藉由模式預測適時加強防治作業,降低農民損失。本研究於2008-09年於國立中興大學農業試驗場進行實驗,利用平台試驗瞭解樹麻雀於取食稻穀時群集數量與取食速率之關係;群集可以減少個體之警戒頻率並提高取食速率,但隨著群集數量愈多,造成個體所能分配到的食物量減少,使得取食速率又逐漸降低。然而,在食物豐富的情況下,個體之取食速率將不受群集數量所影響;群集數量愈多,個體警戒頻率愈少,取食速率愈快。
除平台試驗之外,本研究也進行水稻田觀察錄影,拍攝樹麻雀於水稻田取食之情況,並計算樹麻雀的群集數量、取食時間與取食頻率,且從水稻抽穗後每週測量稻穗之重量。結合取食速率迴歸線與水稻田錄影數據,估算樹麻雀之取食量,發現樹麻雀每日取食量(Y)與水稻成熟天數(X)成正相關:Y= 0.16X - 1.17
(R2 = 0.76, p<0.05)。由於稻穗在成熟過程中重量會逐漸變重,故以取食的顆粒數來估算樹麻雀對水稻田之危害率,發現於第四週取食顆粒數最多,佔總取食顆粒數57.5%。根據結果顯示,農業試驗場於2009年一期稻作,樹麻雀共取食206.2公斤的稻穗,佔總產量1%,其中水稻抽穗後第四週,危害率最高0.49%。本研究將樹麻雀對稻作的危害進行量化,水稻田愈接近收割,樹麻雀取食量愈多,且在水稻抽穗後第21-28天是危害之高峰期,此時是需加強防治的時段。

Tree sparrow(Passer montanus)is a social animal. They would flock together and flew to the rice fields to forage on grain during rice ripening period result in the loss of production. Considering rice field in the background, understanding for foraging model of tree sparrow studied in this research. The main objective was to reduce the loss of production through the foraging model. We filmed the state of foraging of tree sparrows at the agricultural experimental station of National Chung-Hsing University at Taichung in Taiwan during February to June in 2008. Result detailed about the relationships between flock size and uptake rate through the food patch, where more individuals in a flock recorded lower alert frequency and forage faster. However, uptake rate is reduced due to the limited food supply. Therefore, the uptake rate of tree sparrows didn’t affected by flock size in the state of sufficient food supply. More individuals in one flock reduced the alert frequency and forage faster from foraging.
In additional of food patch experiment, the rice grain weight measured every week from the rice heading stage. The data was calculated of flock size、foraging time and foraging frequency through the taped observation data, and combined the data with the result of food patch experiments to predict quantity of grains (kg/ha) did tree sparrows forage at organic rice field per day. The daily rice consumption (Y) and the mature date of rice(X) expresses as Y= 0.16X - 1.17 (R2 = 0.76, p<0.05). The grains became heavier each day during the ripening period. Weight of the rice grain has changed during the ripening period, therefore, the number of grains consumed by tree sparrows represented the rice damage rate. Tree sparrow foraged the maximum on the fourth week of rice ripening period with an average of fifty-eight percent of all foraging amount. According to this study, the foraging amount of first-crop rice of tree sparrows in 2009 is 206.2 kg with equivalent to one percent of total rice yield. In addition, the damage rate is the most concerning is 0.49%, on the fourth week. We quantified the damage of foraging amount of tree sparrows. The tree sparrows foraged more and more when the ripening progresses. Therefore, current research concluded to take damage control action from the day of 21 to 28 after the rice heading, as it was the time of most serious damage by tree sparrow foraging.
其他識別: U0005-2001201014300400
Appears in Collections:生命科學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.