Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributorChia-Ning Shenen_US
dc.contributorChia-Che Changen_US
dc.contributor.advisorHong-Lin Suen_US
dc.contributor.authorLin, Chih-Yaoen_US
dc.identifier.citationAbremski K, Gottesman S (1982) Purification of the bacteriophage lambda xis gene product required for lambda excisive recombination. J Biol Chem 257(16): 9658-9662. Alami R, Greally JM, Tanimoto K, Hwang S, Feng YQ et al. (2000) Beta-globin YAC transgenes exhibit uniform expression levels but position effect variegation in mice. Human molecular genetics 9(4): 631-636. Aubert J, Stavridis MP, Tweedie S, O''Reilly M, Vierlinger K et al. (2003) Screening for mammalian neural genes via fluorescence-activated cell sorter purification of neural precursors from Sox1-gfp knock-in mice. Proceedings of the National Academy of Sciences of the United States of America 100 Suppl 1: 11836-11841. Barraud P, Thompson L, Kirik D, Bjorklund A, Parmar M (2005) Isolation and characterization of neural precursor cells from the Sox1-GFP reporter mouse. The European journal of neuroscience 22(7): 1555-1569. Bauer CE, Gardner JF, Gumport RI (1985) Extent of sequence homology required for bacteriophage lambda site-specific recombination. J Mol Biol 181(2): 187-197. Bronson SK, Plaehn EG, Kluckman KD, Hagaman JR, Maeda N et al. (1996) Single-copy transgenic mice with chosen-site integration. Proceedings of the National Academy of Sciences of the United States of America 93(17): 9067-9072. Bushman W, Yin S, Thio LL, Landy A (1984) Determinants of directionality in lambda site-specific recombination. Cell 39(3 Pt 2): 699-706. Bushman W, Thompson JF, Vargas L, Landy A (1985) Control of directionality in lambda site specific recombination. Science 230(4728): 906-911. Call LM, Moore CS, Stetten G, Gearhart JD (2000) A cre-lox recombination system for the targeted integration of circular yeast artificial chromosomes into embryonic stem cells. Human molecular genetics 9(12): 1745-1751. Callaerts P, Halder G, Gehring WJ (1997) PAX-6 in development and evolution. Annual review of neuroscience 20: 483-532. Capecchi MR (2005) Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century. Nature reviews 6(6): 507-512. Chung S, Shin BS, Hedlund E, Pruszak J, Ferree A et al. (2006) Genetic selection of sox1GFP-expressing neural precursors removes residual tumorigenic pluripotent stem cells and attenuates tumor formation after transplantation. Journal of neurochemistry 97(5): 1467-1480. Cvetkovic B, Keen HL, Zhang X, Davis D, Yang B et al. (2002) Physiological significance of two common haplotypes of human angiotensinogen using gene targeting in the mouse. Physiological genomics 11(3): 253-262. Dower WJ, Miller JF, Ragsdale CW (1988) High efficiency transformation of E. coli by high voltage electroporation. Nucleic acids research 16(13): 6127-6145. Elkabetz Y, Panagiotakos G, Al Shamy G, Socci ND, Tabar V et al. (2008) Human ES cell-derived neural rosettes reveal a functionally distinct early neural stem cell stage. Genes & development 22(2): 152-165. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292(5819): 154-156. Evans V, Hatzopoulos A, Aird WC, Rayburn HB, Rosenberg RD et al. (2000) Targeting the Hprt locus in mice reveals differential regulation of Tie2 gene expression in the endothelium. Physiological genomics 2(2): 67-75. Fukuda H, Takahashi J, Watanabe K, Hayashi H, Morizane A et al. (2006) Fluorescence-activated cell sorting-based purification of embryonic stem cell-derived neural precursors averts tumor formation after transplantation. Stem cells 24(3): 763-771. Gong S, Zheng C, Doughty ML, Losos K, Didkovsky N et al. (2003) A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425(6961): 917-925. Holliday R (1974) Molecular aspects of genetic exchange and gene conversion. Genetics 78(1): 273-287. Hsu PL, Landy A (1984) Resolution of synthetic att-site Holliday structures by the integrase protein of bacteriophage lambda. Nature 311(5988): 721-726. Kammandel B, Chowdhury K, Stoykova A, Aparicio S, Brenner S et al. (1999) Distinct cis-essential modules direct the time-space pattern of the Pax6 gene activity. Developmental biology 205(1): 79-97. Kikuchi Y, Nash HA (1979) Nicking-closing activity associated with bacteriophage lambda int gene product. Proc Natl Acad Sci U S A 76(8): 3760-3764. Kim TM, Choi YJ, Ko JH, Hasty P (2008) High-throughput knock-in coupling gene targeting with the HPRT minigene and Cre-mediated recombination. Genesis 46(12): 732-737. Landy A (1989) Dynamic, structural, and regulatory aspects of lambda site-specific recombination. Annu Rev Biochem 58: 913-949. Lang RJ, Haynes JM, Kelly J, Johnson J, Greenhalgh J et al. (2004) Electrical and neurotransmitter activity of mature neurons derived from mouse embryonic stem cells by Sox-1 lineage selection and directed differentiation. The European journal of neuroscience 20(12): 3209-3221. Lee EC, Yu D, Martinez de Velasco J, Tessarollo L, Swing DA et al. (2001) A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. Genomics 73(1): 56-65. Li XJ, Du ZW, Zarnowska ED, Pankratz M, Hansen LO et al. (2005) Specification of motoneurons from human embryonic stem cells. Nature biotechnology 23(2): 215-221. Liu P, Jenkins NA, Copeland NG (2003) A highly efficient recombineering-based method for generating conditional knockout mutations. Genome research 13(3): 476-484. Magnani E, Bartling L, Hake S (2006) From Gateway to MultiSite Gateway in one recombination event. BMC molecular biology 7: 46. Okladnova O, Syagailo YV, Mossner R, Riederer P, Lesch KP (1998) Regulation of PAX-6 gene transcription: alternate promoter usage in human brain. Brain research 60(2): 177-192. Parmar M, Li M (2007) Early specification of dopaminergic phenotype during ES cell differentiation. BMC developmental biology 7: 86. Paul Hasty AA, Allan Bradley (2000) Gene targeting, principles, and practicec in mammalian cells. In: Joyner AL, editor. Gene targeting : a practical approach: Oxford University Press. pp. 1-35. Placantonakis DG, Tomishima MJ, Lafaille F, Desbordes SC, Jia F et al. (2008) Bac Transgenesis in Human Es Cells as a Novel Tool to Define the Human Neural Lineage. Stem cells 27(3):521-32. Robert Lanza JG, Brigid Hogan, Douglas Melton, Roger Pedersen, E. Donnall Thomas, James Thomson and Michael West (2006) Essentials of Stem Cell Biology. page. 289~292. Shizuya H, Birren B, Kim UJ, Mancino V, Slepak T et al. (1992) Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proceedings of the National Academy of Sciences of the United States of America 89(18): 8794-8797. Smith AG (2001) Embryo-derived stem cells: of mice and men. Annual review of cell and developmental biology 17: 435-462. Sottile V, Li M, Scotting PJ (2006) Stem cell marker expression in the Bergmann glia population of the adult mouse brain. Brain research 1099(1): 8-17. Suter DM, Tirefort D, Julien S, Krause KH (2008) A Sox1 to Pax6 switch drives neuroectoderm to radial glia progression during differentiation of mouse embryonic stem cells. Stem cells 27(1):49-58. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ et al. (1998) Embryonic stem cell lines derived from human blastocysts. Science (New York, NY 282(5391): 1145-1147. Tomishima MJ, Hadjantonakis AK, Gong S, Studer L (2007) Production of green fluorescent protein transgenic embryonic stem cells using the GENSAT bacterial artificial chromosome library. Stem cells 25(1): 39-45. Trouillas M, Saucourt C, Guillotin B, Gauthereau X, Ding L et al. (2009) Three LIF-dependent signatures and gene clusters with atypical expression profiles, identified by transcriptome studies in mouse ES cells and early derivatives. BMC Genomics 10(1): 73. Watanabe K, Ueno M, Kamiya D, Nishiyama A, Matsumura M et al. (2007) A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol 25(6): 681-686. Xu RH, Peck RM, Li DS, Feng X, Ludwig T et al. (2005) Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells. Nat Methods 2(3): 185-190. Yin S, Bushman W, Landy A (1985) Interaction of the lambda site-specific recombination protein Xis with attachment site DNA. Proc Natl Acad Sci U S A 82(4): 1040-1044. Ying QL, Nichols J, Chambers I, Smith A (2003) BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115(3): 281-292. Yu D, Sawitzke JA, Ellis H, Court DL (2003) Recombineering with overlapping single-stranded DNA oligonucleotides: testing a recombination intermediate. Proceedings of the National Academy of Sciences of the United States of America 100(12): 7207-7212. Zhang SC, Wernig M, Duncan ID, Brustle O, Thomson JA (2001) In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat Biotechnol 19(12): 1129-1133. Zwaka TP, Thomson JA (2003) Homologous recombination in human embryonic stem cells. Nature biotechnology 21(3): 319-321.en_US
dc.description.abstract胚幹細胞其優秀的自我增生(self-renew)及分化能力(pluripotency)被認為是可使用於成體組織修補的優異再生醫學素材,尤其是再生性較低的神經系統,當神經受損或退化,用細胞治療的方式就相當適合。在人類胚幹細胞的分化研究當中,已有許多探討胚幹細胞分化成神經細胞時期的研究,目前發現在一個分化的特殊時期,具有良好的分化出各式各樣神經細胞的能力,稱為neural rosette,而這個時期所表現的基因為Paired box gene 6 (Pax-6)。本實驗欲建構Pax-6 Knock-in (K-I)人類胚幹細胞株和轉基因 (transgenic)人類胚幹細胞株,希望能以綠色螢光用來代表Pax-6的表現,確立Pax-6基因開始表現的時期以及表現Pax-6的細胞的分化能力研究。本實驗針對欲執行K-I的載體,使用以位點特異性重組(site-specific recombination) 原理的Three-fragment multi-Gateway 系統將K-I所需要的兩段長同源性片段 (homologous arm) 以及欲取代人類胚幹細胞染色體上 pax-6位置的綠螢光及抗生素抗性篩選基因依順序接在 K-I 所需要的質體上。而在轉基因載體的建立,則使用了細菌人工染色體 (bacterial artificial chromosome, BAC) 轉基因系統,以特殊的大腸桿菌株 EL350 中所含的受到溫度調控的重組蛋白,將 BAC上操作 pax-6 部分以綠螢光蛋白及抗生素抗性基因取代。本實驗將構築好的K-I及轉基因載體以 Nucleofector 送入人類胚幹細胞後,以抗生素進行篩選並進行後續鑑定以建立 pax-6 Knock-in及轉基因之人類胚幹細胞株。zh_TW
dc.description.abstractEmbryonic stem cells (ESCs) can applied to regenerative medicine because their pluripotency and they are good at self-renew. Never system is a low regenesis system, so the ES cell therapy is suitable for repair of injured or degenerated never system. There have been a lot of researches about neural development stage in the human embryonic stem cells (hESCs). One cell type that has the good neuron differentiation ability called neural rosette and paired box gene 6 (Pax-6) is expressed at this stage. We want to establish human pax-6 knock-in and transgenic ES cell line which can be utilized as a model to determine if pax-6 is an appropriate marker for distinguishing the hES differentiation stage. At the beginning, we have constructed knock-in and transgenic vector by different method. We used the three-fragment multi-gateway system which mimics the site specific recombination to make the knock-in vector. To make the knock-in vector, we need to clone upstream and downstream homologous region and make reporter gene, like green fluorescence, and a selection gene. Meanwhile, we search the human bacterial artificial chromosome (BAC) contained pax-6 gene and design a vector to make pax-6 on the BAC can be replaced by green fluorescence gene. The Escherichia coli strain EL350 contains a thermo-sensitive recombinase and it can achieve in vitro homologous recombination. Transgenic vector can use the EL350 system to construct efficiently. We will send Knock-in and Transgenic vector in hESCs by Nucleofector and screen the hES cell line with appropriate antibiotics.en_US
dc.description.tableofcontents目錄 中文摘要 i 英文摘要 ii 圖表目錄 iv 第一章、 前言 1 第二章、 材料與方法 11 第三章、 結果 28 第四章、 討論 35 第五章、 參考文獻 38 圖表 43 附錄 73 圖表目錄 圖1.構築Venus-NLS 43 圖2.構築篩選基因loxP2Pgkβ-geo 44 圖3.構築Venus-NLS_loxP2Pgkβ-geo 45 圖4.確認VenusNLS的表現 46 圖5.Gateway 三段PCR 47 圖6.上下游片段BP reaction 48 圖7.Knock-in Insert片段BP reaction 49 圖8.構築pDEST R4R3 將上負篩選基因Pgk-DTA 50 圖9.建構欲進行Pax-6轉基因載體流程示意圖 51 圖10.設計欲進行短片段重組之質體示意圖 52 圖11.Pax-6上游同源片段5’ flanking region選殖 53 圖12. Pax-6下游同源片段3’ flanking region選殖 54 圖13.報導基因VenusNLS的選殖 55 圖14.確認報導基因VenusNLS的表現 56 圖15.構築PL452-Pax6 BACTG 3''flanking 57 圖16.構築PL452-Pax6 BACTG 3''flanking-5''fanking 58 圖17.構築PL452-5’-3’-VenusNLS 59 圖18.確認RP11-804L22電穿孔到EL350 60 圖19.將PL452-5’-3’-VenusNLS剪切成線狀 61 圖20.確認Pax-6 BAC重組成功 62 圖21.將重組的Pax-6 BAC 以限制酵素確認 63 圖22. 將TE671 cDNA以PCR確認pax-6 表現 64 圖23.繼代中之人類胚幹細胞在顯微鏡觀察下的型態 65 圖24.神經分化流程示意圖 66 圖25. EB 生成 67 圖26.人類胚幹細胞進行神經分化後Neural Rosette之構造 68 圖27.人類胚幹細胞進行 single cell dissociation之細胞型態 69 表1.建構knock-in之引子 70 表2.建構transgene之引子 71 表3.確認Pax-6 cDNA表現之引子。 72 附錄圖1. Multi Gateway 流程示意圖 73 附錄圖2. 藉由重組交換將BAC 序列片段轉殖到載體 74zh_TW
dc.subjecthuman embryonic stem cellen_US
dc.subjectneuron rosetteen_US
dc.title以 MultiGateway 系統以及 BAC 構築載體來建立 pax-6 knock-in及轉基因之人類胚幹細胞株zh_TW
dc.titleUsing MultiGateway system and Bacterial Artificial Chromosome to construct vector for establishment of pax-6 knock-in and transgenic human embryonic stem cell lineen_US
dc.typeThesis and Dissertationzh_TW
item.fulltextno fulltext-
item.openairetypeThesis and Dissertation-
Appears in Collections:生命科學系所
Show simple item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.