Please use this identifier to cite or link to this item:
標題: 藉由提升螺旋藻中GLA含量並將之合成富含GLA之三酸甘油酯
Enhancement of GLA content in Spirulina platensis and synthesis of GLA-enriched Triglyceride
作者: 王星惠
Wang, Hsin-Hui
關鍵字: Spirulina platensis;螺旋藻;γ-linolenic acid;triglycerides;lipase-catalyzed esterification;γ-次亞麻油酸;三酸甘油酯;酵素酯化反應
出版社: 生命科學系所
引用: 1. Hu, Q., Handbook of Microalgal Culture, Biotechnology and Applied Phycology Industrial production of microalgal cell-mass and secondary products-major industrial species. Arthrospira (Spirulina) platensis, ed. A. Richmond. 2003, USA, Blackwell Science. 2. 彭子倩,光度、溫度及鹽度對於螺旋藻多醣體(膠質)之影響,水產養殖學系,碩士論文, 國立海洋大學,2005,台灣。 3. Belay, A., Y. Ota, K. Miyakawa, and H. Shimamatsu, Current knowledge on potential health benefits of Spirulina. Journal of Applied Phycology, 1993, 5(2): 235-241. 4. Wikfors, G.H. and M. Ohno, Imapct of algal research in aquaculture. Journal of Phycology, 2001, 37(6): 968-974. 5. 張為憲,李敏雄,呂政義,張永和,陳昭雄,孫璐西,陳怡宏,張基郁,顏國欽,林志城,林慶文,食品化學,1995,台北市,華香園出版社。 6. Sardesai, V.M., The Essential Fatty Acids. Nutrition in Clinical Practice, 1992, 7(4): 179-186. 7. Horrobin, D.F., Loss of delta-6-desaturase activity as a key factor in aging. Medical Hypotheses, 1981, 7(9): 1211-1220. 8. Alonso, D.L. and F.G. Maroto, Plants as `chemical factories'' for the production of polyunsaturated fatty acids. Biotechnology Advances, 2000, 18(6): 481-497. 9. Cohen, Z., M. Reungjitchachawali, W. Siangdung, and M. Tanticharoen, Production and partial purification of γ-linolenic acid and some pigments from Spirulina platensis. Journal of Applied Phycology, 1993, 5(1): 109-115. 10. Wu, D., S.N. Meydani, M. Meydani, M.G. Hayek, P. Huth, and R.J. Nicolosi, Immunologic effects of marine- and plant-derived n-3 polyunsaturated fatty acids in nonhuman primates. American jouranl of clinical nutrition, 1996, 63(2): 273-280. 11. Reddy, D.R., V.S. Prassad, and U.N. Das, Intratumoural injection of gamma leinolenic acid in malignant gliomas. Journal clinical neuroscience, 1998, 5(1): 36-39. 12. Crozier, G.L. and M.-C. Secretin, γ-linolenic acid in infant formula, In γ-linolenic acid:metabolism and its roles in nutrition and medicine, ed. Y.-S. Huang and D.E. Mills. 1996, Champaign, AOCS Press. p. 246-251. 13. Puolakka, J., L. Makarainen, L. Viinikka, and O. Ylikorkala, Biochemical and clinical effects of treating the premenstrual syndrome with prostaglandin synthesis precursors. Journal of reproductive medicine, 1985, 30(3): 149-153. 14. Schalin-Karrila, L. Mattlia, C.T. Jansen, and P. Uotila, Evening primrose oil in the treatment of atopic eczema: effect on clinical status, plasma phospholipid fatty acids and circulating blood prostaglandins. British Journal of Dermatology, 1987, 117(1): 11-19. 15. Jäntti, J., E. Seppälä, H. Vapaatalo, and H. Isomäki, Evening primrose oil and olive oil in treatment of rheumatoid arthritis. Clinical Rheumatology, 1989, 8(2): 238-244. 16. L. Mcgregor, A. D. Smith, M. Sidey, J. Belin, K. J. Zilkha, and J. L. McGregor, Effects of dietary linoleic acid and gamma linolenic acid on platelets of patients with multiple sclerosis. Acta Neurologica Scandinavica, 1989, 80(1): 23-27. 17. Horrobin, D.F. and Y.S. Huang, The role of linoleic acid and its metabolites in the lowering of plasma cholesterol and the prevention of cardiovascular disease. International Journal of Cardiology, 1987, 17(3): 241-255. 18. Jiang, W.G., S. Hiscox, M.B. Hallett, C. Scott, D.F. Horrobin, and M.C. Puntis, Inhibition of hepatocyte growth factor-induced motility and in vitro invasion of human colon cancer cells by gamma-linolenic acid. British Journal of Cancer, 1995, 71(4): 744-752. 19. Keen, H., J. Payan, J. Allawi, J. Walker, G.A. Jamal, A.I. Weir, L.M. Henderson, E.A. Bissessar, P.J. Watkins, and M. Sampson, Treatment of diabetic neuropathy with gamma-linolenic acid. The gamma-Linolenic Acid Multicenter Trial Group. Diabetes Care, 1993, 16(1): 8-15. 20. Warburg, O., Uber die Geschwindigkeit der photochemischen KohlensSurezersetzung in lebenden Zellen. Biochemische Zeitschrift, 1919, 100: 230-270. 21. Burlew, J.S., Algae Culture. 1953, Washington, DC., From Laboratory to Pilot Plant. Carnegie Institution of Washington. p. 3-23. 22. Durand-Chastel, H., Production and use of Spirulina in Mexico, in Algae Biomass, ed. G. Shelef and C.J. Soeder. 1980, Amsterdam, Elsevier/North Holland Biomedical Press. p. 51-64. 23. Kawaguchi, K., Microalgae production systems in Asia, Algae Biomass Production and Use, ed. G. Shelef and C.J. Soeder. 1980, Amsterdam, Elsevier/North Holland Biomedical Press. p. 25-33. 24. Chojnacka, K. and A. Noworyta, Evaluation of Spirulina sp. growth in photoautotrophic, heterotrophic and mixotrophic cultures. Enzyme and Microbial Technology, 2004, 34(5): 461-465. 25. Borowitzka, M., Algae cultureed, Aquaculture: Farming Aquatic Animals and Plants, ed. J.S. Lucas and P.C. Southgate. 2003, UK, Blackwell Publishing Ltd. p. 253-276. 26. You, T. and S.M. Barnett, Effect of light quality on production of extracellular polysaccharides and growth rate of Porphyridium cruentum. Biochemical Engineering Journal, 2004, 19(3): 251-258. 27. Zarrouk, C., Influence de divers facteurs physiques et chimiques sur la croissance et la photosynthèsede Spirulina maxima, Contribution à l''étuded''une cyanophycée,PH.D Université De Paris, 1966, France. 28. Vonshak, A., R. Guy, R. Poplawsky, and I. Ohad, Photoinhibition and Its Recovery in Two Strains of the Cyanobacterium Spirulina platensis. Plant and Cell Physiology, 1988, 29(4): 721-726. 29. Tomaselli, L., G. Boldrini, and M.C. Margheri, Physiological behaviour of Arthrospira (Spirulina) maxima during acclimation to changes in irradiance. Journal of Applied Phycology, 1997, 9(1): 37-43. 30. Qiang, H., Y. Zarmi, and A. Richmond, Combined effects of light intensity, light-path and culture density on output rate of "Spirulina platensis" (Cyanobacteria). European Journal of Phycology, 1998, 33(2): 165 - 171. 31. Fogg, G.E. and B. Thake, Algal cultures and phytoplankton ecology, ed. G.E. Fogg and B. Thake. 1975, USA, University of Wisconsin Press. p. 175. 32. Powles, S.B., Photoinhibition of photosynthesis induced by visible light. Annual Review of Plant Physiology, 1984, 35(1): 15. 33. Kaplan, A., Photoinhibition in Spirulina platensis: response of photosynthesis and HCO3- uptake capability to CO2 depleted conditions. Journal experimental botany, 1981, 32(4): 669-677. 34. Singh, D.P., N. Singh, and K. Verma, Photooxidative damage to the cyanobacterium Spirulina platensis mediated by singlet oxygen. Current Microbiology, 1995, 31(1): 44-48. 35. Richmond, A., Outdoor mass cultures of microalgae, Handbook of Microalgal Mass Culture, ed. A. Richmond. 1986, Boca Raton,FL, CRC Press. p. 285-330. 36. Jiménez, C., B.R. Cossío, D. Labella, and F. Xavier Niell, The Feasibility of industrial production of Spirulina (Arthrospira) in Southern Spain. Aquaculture, 2003, 217(1-4): 179-190. 37. Richmond, A., The challenge confronting industrial microagriculture: high photosynthetic efficiency in large-scale reactors. Hydrobiologia, 1987, 151-152(1): 117-121. 38. Shimada, A., M. Oguchi, K. Otsubo, K. Nitta, T. Koyano, and K. Miki, Application of tubular photobioreactor system to culture Spirulina for food production and gas exchange, Japanese society for marine biotechnology, ed. S. Miyachi, I. Karube, and Y. Ishida. 1989, Tokyo, Japan, Current Topics in Marine Biotechnology. p. 147. 39. Castenholz, R., Subsection Ⅲ, Order Oscillatoriales, Bergey''s Manual of Systematic Bacteriology, ed. J.T. Staley, M.P. Bryant, N. Pfennig, and J.G. Holt. 1989, Baltimore, Williams and Wilkin. p. 1771-1780. 40. Blumwald, E. and E. Tel-Or, Osmoregulation and cell composition in salt-adaptation of Nostoc muscorum. Archives of Microbiology, 1982, 132(2): 168-172. 41. Blumwald, E., R.J. Mehlhorn, and L. Packer, Ionic Osmoregulationduring Salt Adaptation of the Cyanobacterium Synechococcus 6311. Plant Physiology, 1983, 73(2): 377-380. 42. Vonshak, A. and A. Richmond, Photosynthetic and respiratory activity in Anacystis nidulans adapted to osmotic stress. Plant Physiology, 1981, 68(2): 504-505. 43. Molitor, V., W. Erber, and G.A. Peschek, Increased levels of cytochrome oxidase and sodium-proton antiporter in the plasma membrane of Anacystis nidulans after growth in sodium-enriched media. FEBS letters, 1986, 204: 251-256 44. Fry, I.V., M. Huflejt, W.W.A. Erber, G.A. Peschek, and L. Packer, The role of respiration during adaptation of the freshwater cyanobacterium Synechococcus 6311 to salinity. Plant Physiology and Biochemistry, 1986, 242: 686-691. 45. Martel, A., S. Yu, G. Garcia-Reina, P. Lindblad, and M. Pedersén, Osmotic-adjustment in the cyanobacterium Spirulina platensis: presence of an α-glucosidase. Plant Physiology and Biochemistry, 1992, 30: 573-578. 46. Vonshak, A., Spirulina: growth, physiology and biochemistry, Spirulina platensis (Arthrospira): Physiology,Cell-Biology and Biotechnology, ed. A. Vonhask. 1997, UK, Taylor and Francis. p. 43-66. 47. Tomaselli, L., L. Giovannetti, and G. Torzillo, Physiology of stress response in Spirulina spp, Spirulina Algae of Life, ed. H. Doumenge, D. C., and A. Toulemont. 1993, Spécial, Monaco, Bulletin de1’Instituit océanographique. p. 65-75. 48. Belkin, S. and S. Boussiba, Resistance of Spirulina platensis to ammonia at high pH values. Plant and Cell Physiology, 1991, 32(7): 953-958. 49. Kudo, T. and K. Horikoshi, Effect of pH and sodium ion on germination of alkalophilic bacillus species. Agricultural and Biological Chemistry, 1983, 47: 665-669. 50. McLaggan, D., M.J. Selwyn, A.P. Dawson, and I.R. Booth, Role of Na+ in pH homeostasis by the alkalophilic bacterium Exiguobacterium aurantiacum. Journal of General Microbiology, 1991, 137: 1709-1714. 51. Padan, E., D. Zilberstein, and S. Schuldiner, pH homesstasis in bacteria. Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes, 1981, 650(2-3): 151-166. 52. Schlesinger, P., S. Belkin, and S. Boussiba, Sodium deprivation under alkaline conditions causes rapid death of the filamentous cyanobacterium Spirulina Platensis. Journal of Phycology, 1996, 32(4): 608-613. 53. Vonshak, A. and L. Tomaselli, Arthrospira (Spirulina) : systematics and ecophysiology, Ecology of Cyanobacteria, ed. B.A. Whitton and M. Potts. 2000, The Netherlands, Kluwer Academic Publishing. p. 505-522. 54. Grant, W.D., W.E. Mwatha, and B.E. Jones, Alkaliphiles: ecology, diversity and applications. FEMS Microbiology Letters, 1990, 75(2-3): 255-269. 55. Ratledge, C., Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie, 2004, 86(11): 807-815. 56. Ratledge, C., Biotechnology of oil and fats, in Microbial Lipids, C. Ratledge and S.G. Wilkinson, Editors. 1989, Academic Press: London. 57. Sukenik, A., Y. Carmeli, and T. Berner, Regulation of fatty acid composition by irradiance level in the eustigmatophyte Nannochloropsis sp. Journal of Phycology, 1989, 25(4): 686-692. 58. Becker, E.W., Microalgae, Biotechnology and Microbiology. 1994, Cambridge, Cambridge University Press. 59. Omata, T. and N. Murata, Isolation and characterization of the cytoplasmic membranes from the blue-green alga (Cyanobacterium) Anacystis nidulans. Plant and Cell Physiology, 1983, 24(6): 1101-1112. 60. Wada, H. and N. Murata, Synechocystis PCC6803 mutants defective in desaturation of fatty acids. Plant and Cell Physiology, 1989, 30(7): 971-978. 61. Murata, N., H. Wada, and Z. Gombos, Modes of fatty-acid desaturation in Cyanobacteria. Plant Physiology, 1992, 33(7): 933-941. 62. Wanasundara, U.N. and F. Shahidi, Concentration of omega 3-polyunsaturated fatty acids of seal blubber oil by urea complexation: optimization of reaction conditions. Food Chemistry, 1999, 65(1): 41-49. 63. Walker, T., H. Cochran, and G. Hulbert, Supercritical carbon dioxide extraction of lipids from Pythium irregulare. Journal of the American Oil Chemists'' Society, 1999, 76(5): 595-602. 64. Shimada, Y., A. Sugihara, H. Nakano, T. Kuramoto, T. Nagao, M. Gemba, and Y. Tominaga, Purification of docosahexaenoic acid by selective esterification of fatty acids from tuna oil with Rhizopus delemar lipase. Journal of the American Oil Chemists'' Society, 1997, 74(2): 97-101. 65. Shimada, Y., K. Maruyama, A. Sugihara, S. Moriyama, and Y. Tominaga, Purification of docosahexaenoic acid from tuna oil by a two-step enzymatic method: Hydrolysis and selective esterification. Journal of the American Oil Chemists'' Society, 1997, 74(11): 1441-1446. 66. Brown, J.B. and D.K. Kolb, Application of low temperature crystallization in the separation of the fatty acids and their compounds. Prog. Chem. Fats Lipids, 1955, 3: 57-94. 67. Canas, B.J. and M.P. Yurawecz, Ethyl carbamate formation during urea complexation for fractionation of fatty acids. Journal of the American Oil Chemists'' Society, 1999, 76: 537. 68. Medina, A.R., E.M. Grima, A.G. Giménez, and M.J.I. González, Downstream processing of algal polyunsaturated fatty acids. Biotechnology Advances, 1998, 16(3): 517-580. 69. Krukonis, V.J., Supercritical fluid fractionation of fish oils: concentration of eicosapentaenoic acid. Journal of the American Oil Chemists'' Society, 1984, 61: 698-699. 70. Nilsson, W., E. Gauglitz, J. Hudson, V. Stout, and J. Spinelli, Fractionation of menhaden oil ethyl esters using supercritical fluid CO2. Journal of the American Oil Chemists'' Society, 1988, 65(1): 109-117. 71. Teramoto, M., H. Matsuyama, N. Ohnishi, S. Uwagawa, and K. Nakai, Extraction of ethyl and methyl esters of polyunsaturated fatty acids with aqueous silver nitrate solutions. Industrial and Engineering Chemistry Research, 1994, 33(2): 341-345. 72. Kubota, F., M. Goto, and F. Nakashio, Separation of polyunsaturated fatty acids with silver nitrate using a hollow-fiber membrane extractor. Separation Science and Technology, 1997, 32: 1529-1541. 73. Bottino, N.R., G.A. Vandenburg, and R. Reiser, Resistance of certain long-chain polyunsaturated fatty acids of marine oils to pancreatic lipase hydrolysis. Lipids, 1967, 2: 489-493. 74. Shimada, Y., N. Sakai, A. Sugihara, H. Fujita, Y. Honda, and Y. Tominaga, Large-scale purification of γ-linolenic acid by selective esterification using Rhizopus delemar lipase. Journal of the American Oil Chemists'' Society, 1998, 75(11): 1539-1544. 75. 曾德仁,魷魚內臟油中EPA 與DHA 之濃縮,農業化學研究所,碩士論文, 國立臺灣大學, 1994,台灣。 76. Schlenk, H., Crystallization of fatty acids. Journal of the American Oil Chemists'' Society, 1961, 38: 728-736. 77. Brown, J.B., Fractional solvent crystallization. Journal of the American Oil Chemists'' Society, 1955, 32: 646-652. 78. Konishi, H., W.E. Neff, and T.L. Mounts, Chemical interesterification with regioselectivity for edible oils. Journal of the American Oil Chemists'' Society, 1993, 70: 411-415. 79. Cerdán, L., A. Medina, A. Giménez, M. González, and E. Grima, Synthesis of polyunsaturated fatty acid-enriched triglycerides by lipase-catalyzed esterification. Journal of the American Oil Chemists'' Society, 1998, 75(10): 1329-1337. 80. Medina, A.R., L. Esteban Cerdán, A. Gimenez Giménez, B. Camacho Páez, M.J. Ibáñez González, and E. Molina Grima, Lipase-catalyzed esterification of glycerol and polyunsaturated fatty acids from fish and microalgae oils. Journal of Biotechnology, 1999, 70(1-3): 379-391. 81. Klibanov, A.M., Enzyme thermoinactivation in anhydrous organic solvents. Biotechnology and Bioengineering, 1991, 37: 843-853. 82. Gupta, M.N., Enzyme function in organic solvents. European Journal of Biochemistry, 1992, 203: 25-32. 83. Mosbach, K., Molecular imprinting. Trends in Biochemical Sciences, 1994, 19: 9-14. 84. Dordick, J.D., Designing enzymes for use in organic solvents.Biotechnology Progress, 1991, 8: 259-267. 85. Vonshak, A., L. Chanawongse, B. Bunnag, and M. Tanticharoen, Light acclimation and photoinhibition in three Spirulina platensis (cyanobacteria) isolates. Journal of Applied Phycology, 1996, 8(1): 35-40. 86. Wang, C.-Y., C.-C. Fu, and Y.-C. Liu, Effects of using light-emitting diodes on the cultivation of Spirulina platensis. Biochemical Engineering Journal, 2007, 37(1): 21-25. 87. Bligh, E.G. and W.J. Dyer, A rapid method of total lipid extraction and purification. Canadian Journal of biochemistry and physiology, 1959, 37(8): 911-917. 88. 林榮芳,黃檀溪,比較耐熱性小球藻異營生長之特性,師大學報數理與科技類,2002,47(1): 31-40。 89. Tanticharoen, M., M. Reungjitchachawali, B. Boonag, P. Vonktaveesuk, A. Vonshak, and Z. Cohen, Optimization of γ-linolenic acid (GLA) production in Spirulina platensis. Journal of Applied Phycology, 1994, 6(3): 295-300. 90. Alberto Vieira Costa, J., L. Maria Colla, and P. Fernando Duarte Filho, Improving Spirulina platensis biomass yield using a fed-batch process. Bioresource Technology, 2004, 92(3): 237-241. 91. Olguín, E.J., S. Galicia, O. Angulo-Guerrero, and E. Hernández, The effect of low light flux and nitrogen deficiency on the chemical composition of Spirulina sp. (Arthrospira) grown on digested pig waste. Bioresource Technology, 2001, 77(1): 19-24. 92. Cohen , Z. and A. Vonshak, Fatty acid composition of Spirulina and Spirulina-like cyanobacteria in relation to their chemotaxonomy. Phytochemistry, 1991, 30: 205-206. 93. Borowitzka, M.A., Fats, oils and hydrocarbons, in Microalgal Bbiotechnology, ed. M.A. Borowitzka and L.J. Borowitzka. 1988, New York, Cambridge University Press. 94. Quoc, K.P., D. J.-P., D. C., and M. P, Comparative effects of exogenous fatty acid supplementations on the lipids from the cyanobacterium Spirulina platensis. Plant Physiology and Biochemistry, 1994, 32: 501-509. 95. Collaa, L.M., T.E. Bertolina, and J.A.V. Costa, Fatty acids profile of Spirulina platensis grown under different temperatures and nitrogen concentrations. Zeitschrift fui naturforsch, 2004, 59: 55-59. 96. Haagsma, N., C. van Gent, J. Luten, R. de Jong, and E. van Doorn, Preparation of an ω3 fatty acid concentrate from cod liver oil. Journal of the American Oil Chemists'' Society, 1982, 59(3): 117-118. 97. Medina, A., A. Giménez, F. Camacho, J. Pérez, E. Grima, and A. Gómez, Concentration and purification of stearidonic, eicosapentaenoic, and docosahexaenoic acids from cod liver oil and the marine microalga Isochrysis galbana. Journal of the American Oil Chemists'' Society, 1995, 72(5): 575-583. 98. Campra-Madrid, P. and J. Guil-Guerrero, High-performance liquid chromatographic purification of γ-linolenic acid (GLA) from the seed oil of two Boraginaceae species. Chromatographia, 2002, 56(11): 673-677. 99. 曾國峰,以酵素催化酸解反應合成結構脂質之研究,化學工程系,碩士論文,國立台灣科技大學,2001,台灣。 100. Shimada, Y., K. Maruyama, M. Nakamura, S. Nakayama, A. Sughihara, and Y. Tominaga, Selective hydrolysis of polyunsaturated fatty acid-containing oil with Geotrichum candidum lipase. Journal of the American Oil Chemists'' Society, 1995, 72(12): 1577-1581. 101. Villeneuve, P. and T.A. Foglia, Lipase specificities: Potential application in lipid bioconversions. Inform, 1997, 8(6): 640-650. 102. Ergan, F., S. Lamare, and M. Trani, Lipase specificity against some fatty acids? Annals of the New York Academy of Sciences, 1992, 672(Enzyme Engineering XI): 37-44. 103. Shimada, Y., A. Sugihara, M. Shibahiraki, H. Fujita, H. Nakano, T. Nagao, T. Terai, and Y. Tominaga, Purification of γ-linolenic acid from borage oil by a two-step enzymatic method. Journal of the American Oil Chemists'' Society, 1997, 74(11): 1465-1470. 104. Shimada, Y., N. Fukushima, H. Fujita, Y. Honda, A. Sugihara, and Y. Tominaga, Selective hydrolysis of borage oil with Candida rugosa lipase: Two factors affecting the reaction. Journal of the American Oil Chemists'' Society, 1998, 75(11): 1581-1586.
螺旋藻(Spirulina platensis),隸屬於藍綠藻,含有豐富的多元不飽和脂肪酸(Polyunsaturated fatty acid, PUFA),γ-次亞麻油酸(γ-Linolenic Acid, GLA),研究發現具有調節免疫系統和發炎反應等功能。因此富含GLA之油脂近年來被視為最具開發成醫療或健康食品的潛力。油脂在自然界中具有多種的形態,其中以三酸甘油脂(Tiracylglycerol, TG)的形態最易於人體所吸收。因此在本實驗利用改變培養螺旋藻的光源與培養基成分,研究是否對於螺旋藻中的油脂含量與GLA含量有所提升。結果發現,在不同光源照射下(日光燈與植物栽培燈)對於螺旋藻中油脂含量並無顯著的影響。在改變培養基中的碳源(NaHCO3)與氮源(NaNO3)的有或無,發現亦無顯著的影響GLA的含量。接著利用自螺旋藻所萃得脂肪酸,利用尿素進行濃縮,使GLA含量由33%提高到55%。將取得之高含量的GLA轉化成三酸甘油脂的形式,因此利用甘油與脂解酵素共同進行酯化作用,將之轉化為富含GLA之三酸甘油酯,而三酸甘油酯的轉化率在72小時內約為26%,其中約有26%是由GLA所構成。

Spirulina platensis, a blue-green alga, is a rich source of γ-linolenic acid (GLA, 18:3n-6) which has been demonstrated to exhibit many beneficial health effects. GLA from glycerides, especially triglycerides (TG), is absorbed more easily than that from free fatty acids (FFA) or ethyl esters. In the first part of this study, we investigated the effects of light sources and the carbon and nitrogen supply on the growth and GLA content in S. platensis. The algae were cultivated in Zarrouk medium either with or without carbon and nitrogen limitation. The initial GLA concentration in S. platensis was approximately 30% of the total fatty acids. The results showed that light sources (fluorescent bulb vs. plant growing light tube) had no effect on biomass production. In addition, no significant difference was found in GLA content among algae cultivated under carbon (NaHCO3) and/or nitrogen (NaNO3)-limited conditions. In the second part of the study, attempts were made to synthesize GLA-enriched triglycerides by Candida antarctica lipase (Novozym 435)-catalyzed esterification. The GLA concentrate was obtained by saponification of S. platensis lipid and urea fractionation. The content of GLA increased from 33% (after saponification) to 55% (after urea fractionation) of the total fatty acids. Synthesis of GLA-enriched triglycerides was evaluated in lipase Novozym 435-catalyzed esterification of GLA concentrate and glycerol in hexane. The TG yield reached 26% after 24, 48, and 72 h of reaction and the resulting TG contained 26% GLA.
其他識別: U0005-2301201015183200
Appears in Collections:生命科學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.