Please use this identifier to cite or link to this item:
http://hdl.handle.net/11455/22992
標題: | 高鹽甲烷太古生物ClpB蛋白之特性分析 Characterization of ClpB from halophilic methanogenic archaeon- Methanohalophilus portucalensis FDF1 |
作者: | 柯宗佑 Ko, Tsung-Yu |
關鍵字: | ClpB;高鹽甲烷太古生物;Methanohalophilus portucalensis FDF1;chaperone;分子伴護蛋白 | 出版社: | 生命科學系所 | 引用: | AndrÄ, S., G. Frey, R. Jaenicke and K. O. Stetter. 1998. The thermosome from Methanopyrus kandleri possesses an NH4+-dependent ATPase activity. Eur. J. Biochem. 255:93-9. Arakawa, T. and S. N. Timasheff. 1984. Protein stabilization and destabilization by guanidinium salts. Biochem. 23:5924-5929 Baker, T. A. and R. T. Sauer. 2006. ATP-dependent proteases of bacteria: recognition logic and operating principles. Trends Biochem. Sci. 31:647-653. Balch, W. E., G. E. Fox, L. J. Magrum, C. R. Woese and R. S. Wolfe. 1979. Methanogens:revaluation of a unique biological group. Microiol. Rev. 43:260-269. Baldwin, R. L. 1986. Temperature dependence of the hydrophobic interaction in protein folding/unfolding. Proc. Natl. Acad. Sci. USA. 102:15065-15068. Barnett, M. E. and M. Zolkiewski. 2002. Site-directed mutagenesis of conserved charged amino acid residues in ClpB from Escherichia coli. Biochem. 41:11277-11283. Beinker, P., S. Schlee, Y. Groemping, R. Seidel and J. Reinstein. 2002. The N terminus of ClpB from Thermus thermophilus is not essential for the chaperone activity. J. Biol.Chem. 277:47160-47166. Ben-Zvi, A. P. and P. Goloubinoff. 2002. Proteinaceous infectious behavior in non-pathogenic proteins is controlled by molecular chaperones. J. Biol. Chem. 277: 422-427. Bigotti, M. G. and A. R. Clarke. 2005. Cooperativity in the Thermosome. J. Mol. Biol. 348:13-26. Bockareva, E. S. and N. M. Lissin. 1992. Positive cooperativity in the functioning of molecular chaperone GroEL. J. Biol. Chem. 267:6796-8072. Bock, P. E. and C. Frieden. 1974. pH-induced cold lability of rabbit skeletal muscle phosphofructokinase. Biochem. 13:4191-4196. Boone, D. R., T. M. Mathrani, Y. Liu., J. A. G. F. Menasia, R. A. Mah and J. E. Boone. 1993. Isolation and characterization of Methanohalophilus portucalensis sp. Nov. and DNA reassociation study of the genus Methanohalophilus. Int. J. Syst Bcteriol. 43: 430-437 Braig, K., Z. Otwinowski, R. Hegde, D. C. Boisvert, A. Joachimiak, A. L. Horwich and P. B. Sigler. 1994. The crystal structure of bacterial chaperonin GroEL at 2.8 Å. Nature. 371: 578-586. Bukau, B. and A. L. Horwich. 1998. The Hsp70 and Hsp60 chaperone machines. Cell 92:351-366. Cashikar, A.G., E. C. Schirmer, D. A. Hattendorf, J. R. Glover, M. S. Ramakrishnan, D. M. Ware and S. L. Lindquist. 2002. Defining a pathway of communication from the C-terminal peptide binding domain to the N-terminal ATPase domain in a AAA protein. Mol. Cell 9: 751-760. Chen, H. Y., Z. M. Chu, Y. H. Ma, Y. Zhang and S. L. Yang. 2007. Expression and characterization of the chaperonin molecular machine from the hyperthermophilic archaeon Pyrococcus furiosus. J. Basic Microbiol. 47:132-137. Chen, S. Y., M. C. Lai., S. J. Lai. and Y. C. Lee. 2009. Characterization of osmolyte betaine synthesizing sacrosine dimethylglycine N-methyltransferase from Methanohalophilus portucalensis. Arch. Microbiol. 191:735-743. Chow, I. T., M. E. Barnett, M. Zolkiewski and F. Baneyx. 2005. The N-terminal domain of Escherichia coli ClpB enhances chaperone function. FEBS Lett. 579: 4242-4248. Cook, R. J. and C. Wagner. 1984. Glycine N-methyltransferase is a folate binding protein of rat liver cytosol. Proc. Natl. Acad. Sci. USA. 81: 3631-3634. Doyle, S. M., J. Shorter, M. Zolkiewski, J. R Hoskins, S. Lindquist and S. Wickner. 2007a. Asymmetric deceleration of ClpB or Hsp104 ATPase activity unleashes protein-remodeling activity. Nat Struct Mol Biol. 14:114-122. Doyle, S. M., J. R. Hoskins and S. Wickner. 2007b. Collaboration between the ClpB AAA+ remodeling protein and the DnaK chaperone system. PNAS. 104: 11138-11144. Doyle, S. M. and S. Wickner. 2009. Hsp104 and ClpB: protein disaggregating machines. Trends Biochem. Sci.34: 40-48 Ellis, R. J. and S. M. Hemmingsen. 1989. Molecular chaperones: proteins essential for the biogenesis of some macromolecular structures. Trends Biochem.Sci. 14: 339-342. Ellis, R. J. and V. D. V. M. Sakia. 1991. Molecular chaperones. Annu. Rev. Biochem. 60:321-347. Ellis, R. J. 1997. Do molecular chaperones have to be proteins. Biochem. Biophys. Res. Commun. 238:687-692. Ellis, R. J. 2001. Macromolecular crowding, obvious but underappreciated. Trends Biochem. Sci. 26:597-604. Ferguson, T. J. and R. A. Mah. 1983. Isolation and characterization of an H2-oxidizing thermophilic methanogen. Appl. Environ. Microbiol. 45:265-274. Figueiredo, L., D. Klunker, D. Ang, D. J. Naylor, M. J. Kerner, C. Georgopoulos, F. U. Hartl and M. Hayer-Hartl. 2004. Functional Characterization of an Archaeal GroEL/GroES Chaperonin System. J. Biol.Chem. 279:1090-1099. Gidalevitz T., A. Ben-Zvi, K. H. Ho, H. R. Brignull and R. I. Morimoto. 2006. Progressive disruption of cellular protein folding in models of polyglutamine diseases. Science. 311:1471-1474. Gray, T. E. and A. R. Fersht. 1991. Cooperativity in ATP hydrolysis by GroEL is increased by GroES. FEBS Lett. 292:254-258 Gupta, R. S. 1990. Sequence and structural homology between a mouse T-complex protein TCP-1 and the chaperonin family of bacterial. (GroEl, 60-65 kDa heat shock antigen) and eukaryotic proteins. Biochem. Int. 20:833-841. Hartl, F. H. and M. H. Hartl. 2002. Molecular chaperone in cytosol: from nascent chain to folded protein. Science. 295:1852-1858. Haslberger, T., A. Zdanowicz, I. Brand, J. Kirstein, Kürsad Turgay, A. Mogk and B. Bukau. 2008. Protein disaggregation by the AAA+ chaperone ClpB involves partial threading of looped polypeptide segments. Nat. Struct. Mol. Biol. 15:641-650. Hinault, M. P., A. Ben-Zvi and P. Goloubinoff. 2006. Chaperone and protease: cellular fold-controlling factor of proteins in neurodegenerative diseases and aging. J. Mol. Neurosci. 30:249-265. Hung, C. C. and M. C. Lai. 2008. Osmolyte Nε-acetyl-β-lysine biosynthetic gene from methanogenic archaea. p240, I-099. Abstr. 108th. Gen. Meet. Am. Soc. Microbiol. 2008. American Society for Microbiology, Washington, D.C. Hungate, R. E. 1969. A roll tube method for cultivation of strict anaerobes, p117-132. In J. R. Norris and D. W. Ribbons(ed.) Method in microbiology, vol 3B. Academic press Inc., New York, NY. Hunt, J. F., A. J. Weaver, S. J. Landry, L. Gierasch and J. Beisenhofer. 1996. The crystal structure of GroES co-chaperonin at 2.8Å resolution. Nature 379:37-45. Kagawa, H. K., J. Osipiuk, N. Maltsev, R. Overbeek, E. Quaite-Randall, A. Joachimiak and J. D. Trent. 1995. The 60 kDa heat shock proteins in the hyperthermophilic archaeon Sulfolobus shibatae. J. Mol. Biol. 253:712-25. Woo, K. M., K. I. Kim, A. L. Goldberg, D. B. Ha and C. H. Chung. 1992. The heat-shock protein ClpB in Escherichia coli is a protein-activated ATPase. J. Biol. Chem. 267:20429-20434. Kim, K. I., K. M. Woo, I. S. Seong, Z. W. Lee, S. H. Baek and C. H. Chung. 1998. Mutational analysis of the two ATP-binding sites in ClpB, a heat shock protein with protein-activated ATPase activity in Escherichia coli. Biochem J. 333:671-676. Kim, K. I., G. W. Cheong, S. C. Park, J. S. Ha, K. M. Woo, S. J. Choi and C. H. Chung. 2000. Heptameric ring structure of the heat-shock protein ClpB, a protein-activated ATPase in Escherichia coli. J Mol Biol. 303:655-66. Kim, D. Y. and K. K. Kim. 2003. Crystal structure of ClpX molecular chaperone from Helicobacter pylori. J. Biol. Chem. 278:50664-50670. Klumpp, M., W. Baumeister and L. O. Essen. 1997. Structure of the substrate binding domain of the thermossome, an archaeal group II chaperonin. Cell. 17: 263-270. Klunker, D., B. Haas, A. Hirtreiter, L. Figueiredo, D. J. Naylor, G. Pfeifer, V. Müller, U. Deppenmeier, G. Gottschalk, F. U. Hartl and M. Hayer-Hartl. 2003. Coexistence of Group I and Group II chaperonins in the archaeon Methanosarcina mazei. J. Biol. Chem. 278:33256-33257. Laemmli, U. 1970. Cleavage of structral protein during assembly of bacteriophage T4. Nature (London). 222:293-298. Lai, M. C., K. R. Sowers, D. E. Robertson, M. F. Roberts and R. P. Gunsalus. 1991. Distribution of compatibale solutes in halophilic methanogenic archaebacteria. J. Bacteriol. 173:5352-5358. Lai, M. C. and R. P. Gunsalus. 1992. Glycine betaine and potassium ion are the major compatible solutes in the extremely halophilic methanogen Methanohalophilus portucalensis strain Z7302. J. Bacteriol.174:7474-7477. Lai, M. C., D. R. Yang and M. J. Chuang. 1999. Regulatory factor associated with synthesis of the osmolyte glycine betaine in the halophilic Methanoarchaeon Methanohalophilus portucalensis. Appl. Environ. Microbiol. 65:828-833. Lai, M. C., T. Y. Hong and R. P. Gunsalus. 2000. Glycine betaine transportot in the obligate halophilic Archaeon Methanohalophilus portucalensis. J. Bacteriol. 182: 5020-5024 Lai, M. C., C. C. Wang, M. J. Chuang, Y. C. Wu and Y. C. Lee. 2006. Effects of substrate and potassium on the betaine-synthesizing enzyme glycine sacosine dimethylglycine N-methyltransferase from a halophilic methanoarchaeon Methano- halophilus portucalensis. Res. Microbiol. 157:948-955. Lai, S. J. and M. C. Lai. 2008. The betaine synthesizing enzyme glycine sacrosine N-methyltransferase and sacrosine dimethylglycine N-methyltransferase from Methanohalophilus portucalensis. p 240, I-095. Abstr. 108th. Gen. Meet. Am. Soc. Microbiol. 2008. American Society for Microbiology, Washington, D.C. Laksanalamai, P., T. A. Whitehead and F. T. Robb. 2004. Minimal protein-folding systems in hyperthermophilic archaea. Nat. Rev. Microbiol. 2:315-324. Large, A. T., M. D. Goldberg and P. A. Lund. 2009. Chaperone and protein folding in archaea. Biochem. Soc. Trans. 37:46-51 Lee, S., M. E. Sowa, Y. H. Watanabe, P. B. Sigler, W. Chiu, M. Yoshida and F. T. F. Tsai. 2003. The structure of ClpB: a molecular chaperone that rescues proteins from an aggregated state. Cell 115:229-240. Liberek K., A. Lewandowska and S. Zietkiewicz. 2008. Chaperones in control of protein disaggregation. EMBO J.. 27:328-335. Lin, Z. and H. S. Rye. 2006. GroEL-mediated protein folding: maling the impossible, possible. Crit. Rev. Biochem. Mol. Biol. 41:221-239 Lorimer G. H. and T. O. Baldwin. 1998. Method in Enzymology: Molecular Chaperone. Academic Press. N.Y. Macario, A. J., M. Lange, B. K. Ahring,and E. C. D. Macario. 1999. Stress genes and proteins in the archaea. Microbiol. Mol. Biol. Rev. 63:923-967. Mathrani, I. M. and D. R. Boone. 1985. Isolation and Characteriztion of a Moderately Halophilic Methanogen from a Solar Saltern. Appl. Environ. Microbiol. 50:140-143. Matthews, R. C., B. Maresca, J. P. Burnie, A. Cardona, L. Carratu, S. Conti, G. S. Deepe, A. M. Florez, S. Franceschelli, E. Garcia, L. S. Gargano, G. S. Kobayashi, J. G. McEwen, B. L. Ortiz, A. M. Oviedo, L. Polonelli, J. Ponton, A. Restrepos and A. Storlazzi. 1998. Stress proteins in fungal diseases. Med. Mycol. 36 Suppl 1:45-51. Maurizi, M. R. and D. Xia. 2004. Protein binding and disruption by Clp/Hsp100 chaperones. Structure 12:175-183. Mayer, M. P. and B. Bukau. 2005. Hsp70 chaperones Cellular functions and molecular mechanism in the folding of their fusion partners. Cell Mol. Life Sci. 62: 670-684. Mogk, A., T. Tomoyasu, P. Golobinoff, S. Rudiger, D. Roder, H. Langen and B. Bukau. 1999. Identification of thermolabile Escherichia coli proteins: prevention and reversion of aggregation by Dnak and ClpB. EMBO J. 24:6934-6949. Mogk, A., C. Schlieker, C. Strub, W. Rist, J. Weibezahn and B. Bukau. 2003. Roles of individual domains and conserved motifs of the AAA+ chaperone ClpB in oligomerization, ATP hydrolysis, and chaperone activity. J. Biol. Chem. 278: 17615-17624. Mogk, A., T. Haslberger, P. Tessarz and B. Bukau. 2008. Common and specific mechanisms of AAA+ proteins involved in protein quality control. Biochem. Soc. Trans. 36:120-125. Morgan C. J., A. Miranker and C. M. Dobson. 1998. Characterization of collapsed states in the early stages of the refolding of hen lysozyme. Biochem. 37:8473-8480. Phipps, B. M., A. Hoffmann, K. O. Stetter and W. Baumeister. 1991. A novel ATPase complex selectively accumulated upon heat shock is a major cellular component of thermophilic archaebacteria. EMBO J. 10:17711-1722. Phipps, B. M., D. Typke, R. Hegerl, S. Volker, A. Hoffmann, K. O. Stetter and W. Baumeister. 1993. Structure of a molecular chaperone from a thermophilic archaebacterium. Nature 361:475-477. Satyal, S. H., E. Schmidt, K. Kitagawa, N. Sondhelmer, S. Lindulst, J. M. Kramer and R. I. Morimoto. 2000. Polyglutamine aggregates alter protein folding homeostasis in Caenorhabditis elegans. PNAS US A. 97:5750-5755. Schlieker, C., J. Weibezahn, H. Patzelt, P. Tessarz, C. Strub, K. Zeth, A. Erbse, J. S. Mergener, J. W. Chin, P. G. Schultz, B. Bukau and A. Mogk. 2004. Substrate recognition by the AAA+ chaperone ClpB. Nat. Struct. Mol. Biol. 11:607-615. Schrödel, A. and A. D. Marco. 2005. Characterization of the aggregates formed during recombinant protein expression in bacteria. BMC Biochem. 6:10. Shih, C. J. and M. C. Lai. 2007. Analysis of the AAA+ chaperone clpB gene and stress-response expression in the halophilic methanogenic Archaeon Methano- halophilus portucalensis. Microbiol. 153:2572-2583. Shih, C. J. 2007. Identification and analysis the salt stress related genes and molecular chaperone system in Methanohalophilus portucalensis. Ph. D. Dissertation. National Chung Hsing University, Taichung, Taiwan. Shih, C. J., T. Y. Ko., Y. Lin and M. C. Lai. 2008. ATP hydrolysis and chaperone activity of ClpB from halophilic methanogenic archaea. I-096. Abstr. of the 108th general meeting of society of microbiology. American Society for Microbiology, Boston. Sot, B., S. Bañuelos, J. M. Valpuesta and A. Muga. 2003. GroEL stability and function. Contribution of the ionic interaction at the inter-ring contact sites. J. Biol. Chem. 22:32083-32090. Sugimoto, S., H. Yoshida, Y. Mizunoe, K. Tsuruno, J. Nakayama and K. Sonomoto. 2006. Structural and functional conversion of molecular chaperone ClpB from the gram-positive halophilic lactic acid bacterium Tetragenococcus halophilus mediated by ATP and stress. J. Bacteriol. 188:8070-8078. Trent, J. D., E. Nimmesgern, J. S. Wall, F. U. Hartl and A. L. Horwich. 1991. A molecular chaperone from a thermophilic archaebacterium is related to the eukaryotic protein t-complex polypeptide-1. Nature 354:490-493 Volkin, D. B. and A. M. Klibanov. 1992. Alteration in structure of proteins that cause their irreversible inactivation. Dev. Biol. Stand. 74:73-80 Vogel, M., M. P. Mayer and B. Bukau. 2006. Allosteric regulation of Hsp70 chaperones involves a conserved interdomain iinker. J. Biol. Chem. 281:38705-38711. Watanabe, Y. H., M. Takano and M. Yoshida. 2005. ATP binding to nucleotide binding domain (NBD)1 of the ClpB chaperone induces motion of the long coiled-coil, stabilizes the hexamer, and activates NBD2. J. Biol. Chem. 280:24562-24567 Watanabe, Y. H., Y. Nakazaki, R. Suno and M. Yoshida. 2009. Stability of the two wings of the coiled-coil domain of ClpB chaperone is critical for its disaggregation activity. Biochem. J. 427:71-77. Weibezahn, J., C. Schlieker, B. Bukau and A. Mogk. 2003. Characterization of a trap mutant of the AAA+ chaperone ClpB. J. Biol. Chem. 278:32608-32617. Weibezahn, J., P. Tessarz, C. Schlieker, R. Zahn, Z. Maglica, S. Lee, H. Zentgraf, E. U. Weber-Ban, D. A. Dougan, F. T. F. Tsai, A. Mogk and B. Bukau. 2004. Thermotolerance requires refolding of aggregated proteins by substrate translocation through the central pore of ClpB. Cell 119:653-665. Wolin, E. A., M. E. Clark, S. C. Hand, R. D. Bowlus and G. N. Somero. 1982. Living with water stress: evolution of osmolyte systems. Science 217:1212-1222. Xu, Z., A. L. Horwich and P. B. Sigler. 1997. The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex. Nature 388:741-750. Yifrach, O. and A. Horovitz. 2000. Coupling between protein folding and allostery in the GroE chaperonin system. Proc. Natl. Acad. Sci. USA . 97:1521-1524. Zhang, H., L. Lin, C. Zeng, P. Shen and Y. P. Huang. 2007. Cloning and characterization of a haloarchaeal heat shock protein 70 functionally expressed in Escherichia coli. FEMS Microbiol Lett. 275:168-174. Zmijewski, M. A., A. J. Macario and B. Lipinska. 2004. Functional similarities and differences of an archaeal Hsp70 (DnaK) stress protein compared with its homologue from the bacterium Escherichia coli. J Mol Biol. 336:539-549. Zolkiewski, M., M. Kessel, A. Ginsburg and M. R. Maurizi. 1999. ClpB cooperates with DnaK, DnaJ, and GrpE in suppressing protein aggregation. A novel multi-chaperone system from Escherichia coli. J. Biol. Chem. 274:28083-28086. | 摘要: | 分子伴護蛋白ClpB屬於利用ATP來行使其功能的AAA+家族,具有將細胞內因逆境而形成的聚集蛋白,與DnaK分子伴護蛋白系統合作進行去聚集化反應使蛋白回復正常功能,進而保護細胞不受逆境影響而死亡。ClpB單體結構具有兩個核苷酸結合位,在與ATP結合時會形成環狀六聚體結構。ClpB除存在於真細菌與真核生物中,也在太古生物中發現到,其中於高鹽甲烷太古生物Methanohalophilus portucalensis FDF1中發現的分子伴護蛋白MpClpB,其轉錄表現會受到鹽逆境與熱逆境的誘導。本研究將MpClpB表現於clpB基因缺陷的E. coli BB4561中,顯示在高鹽逆境(1.0 M NaCl)下MpClpB的伴護功能較EcClpB佳,且明顯的縮短遲滯期。同時在E. coli BB4561中表現的MpClpB在高鹽環境下,亦具有去聚集蛋白的能力。因此,MpClpB的表現可能有助於避免高鹽逆境下新生蛋白的聚集,幫助細胞快速適應高鹽環境並生長。純化的異源表現MpClpB和EcClpB一樣也具有形成六聚體的能力,但是在相同測試條件下MpClpB的ATP水解量非常低僅至EcClpB的5%。但高濃度的蛋白與額外添加相容質betaine (0.6 M),能提高MpClpB的ATP水解酶活性7倍,達到EcClpB ATP水解酶活性的40%活性,且在不同反應溫度與不同離子濃度顯現出與EcClpB相似的特性。本研究的結果確認高鹽甲烷太古生物的ClpB,具有ATP水解酶活性與形成六聚體和去聚集蛋白的能力,確為分子伴護蛋白。同時發現相容質betaine的濃度會影響與調節MpClpB的ATP水解酶活性。 Molecular chaperone ClpB belongs to the members of AAA+ protein superfamily, it could prevent the cell death from stress by mediating the disaggregation of the insoluble protein in cooperation with DnaK chaperone system. ClpB contains two nucleotide bind sites and forms the hexameric ring while binding ATP. ClpB is found in bacteria and eukaryotes but also found in archaea. ClpB also called MpClpB, found in the halophilic methanoarchaeon Methanohalophilus portucalensis FDF1, was investigated that the transcriptional level could be induced by the salt shock and heat shock. In this study, MpClpB was heterogenous expressed in clpB-null mutant E. coli BB4561 under high salt stress (1.0 M NaCl). The result shows that chaperone acitivity of MpClpB could reduce the lag time of E. coli BB4561 than EcClpB could do, and also prevent the aggregated protein accumulation under salt strss. It suggests that MpClpB could assist the E. coli BB4561 in growing at the high salt environment. The purified MpClpB could assemble into hexamer as EcClpB, but has low ATPase activity only reached the 5% ATPase activity of EcClpB. Nevertheless the ATPase activity of MpClpB was enhanced with the increased protein concentration and the addition of osmolyte betaine. With 0.6 M betaine the activity of MpClpB increased 7 folds and reached the 40% activity of EcClpB. Furthermore, the ATPase of MpClpB shows the same qualities as EcClpB investigated by previous studies under the different temparatures and ionic strengh. This study confirms that halophilic methanoarchaeon ClpB possesses chaperone characters including the ATPase activity, oligomerization and while cell suffering the salt stress. In addition, the osmolyte betaine plays an important role in regulating the ATPase activity of MpClpB. |
URI: | http://hdl.handle.net/11455/22992 | 其他識別: | U0005-3101201000073700 |
Appears in Collections: | 生命科學系所 |
Show full item record
TAIR Related Article
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.