Please use this identifier to cite or link to this item:
標題: Sonic Hedgehog在公雞睪丸發育中所扮演的角色
The role of Sonic Hedgehog during chicken testis development
作者: 陳俊傑
Chen, Jiun-Jie
關鍵字: Hedgehog;雞;Ptch;patched;chicken;testis;sex;development;hair cell;Leydig cell;regeneration;睪丸;性別;發育;毛髮細胞;萊式細胞;再生
出版社: 生命科學系所
引用: 柒、 參考文獻 1. Clinton, M. Sex determination and gonadal development: a bird''s eye view. J Exp Zool 281, 457-465 (1998). 2. Etches, R.J. The male. in Reproduction in poultry 208 (CABI Publishing, UK., 1996). 3. Beaupre, C.E., et al. Determination of testis temperature rhythms and effects of constant light on testicular function in the domestic fowl (Gallus domesticus). Biol Reprod 56, 1570-1575 (1997). 4. Gilbert, S.F. Sex determination. in Developmental Biology 529-622 (Sinauer Associates USA, 2006). 5. McLaren, A. Meiosis and differentiation of mouse germ cells. Symp Soc Exp Biol 38, 7-23 (1984). 6. McLaren, A. Primordial germ cells in the mouse. Dev Biol 262, 1-15 (2003). 7. Ford, C.E., et al. A functional ''sex-reversed'' oocyte in the mouse. Proc R Soc Lond B Biol Sci 190, 187-197 (1975). 8. Palmer, S.J. & Burgoyne, P.S. In situ analysis of fetal, prepuberal and adult XX----XY chimaeric mouse testes: Sertoli cells are predominantly, but not exclusively, XY. Development 112, 265-268 (1991). 9. McLaren, A. & Southee, D. Entry of mouse embryonic germ cells into meiosis. Dev Biol 187, 107-113 (1997). 10. Chuma, S. & Nakatsuji, N. Autonomous transition into meiosis of mouse fetal germ cells in vitro and its inhibition by gp130-mediated signaling. Dev Biol 229, 468-479 (2001). 11. Adams, I.R. & McLaren, A. Sexually dimorphic development of mouse primordial germ cells: switching from oogenesis to spermatogenesis. Development 129, 1155-1164 (2002). 12. Smith, C.A. & Sinclair, A.H. Sex determination in the chicken embryo. J Exp Zool 290, 691-699 (2001). 13. Western, P.S., Harry, J.L., Graves, J.A. & Sinclair, A.H. Temperature-dependent sex determination: upregulation of SOX9 expression after commitment to male development. Dev Dyn 214, 171-177 (1999). 14. Polanco, J.C. & Koopman, P. Sry and the hesitant beginnings of male development. Dev Biol 302, 13-24 (2007). 15. Wilhelm, D., Palmer, S. & Koopman, P. Sex determination and gonadal development in mammals. Physiol Rev 87, 1-28 (2007). 16. Chassot, A.A., et al. Activation of beta-catenin signaling by Rspo1 controls differentiation of the mammalian ovary. Hum Mol Genet 17, 1264-1277 (2008). 17. Wilhelm, D., et al. Sertoli cell differentiation is induced both cell-autonomously and through prostaglandin signaling during mammalian sex determination. Dev Biol 287, 111-124 (2005). 18. Taketo, T., et al. Expression of SRY proteins in both normal and sex-reversed XY fetal mouse gonads. Dev Dyn 233, 612-622 (2005). 19. Sekido, R., Bar, I., Narvaez, V., Penny, G. & Lovell-Badge, R. SOX9 is up-regulated by the transient expression of SRY specifically in Sertoli cell precursors. Dev Biol 274, 271-279 (2004). 20. Bullejos, M. & Koopman, P. Delayed Sry and Sox9 expression in developing mouse gonads underlies B6-Y(DOM) sex reversal. Dev Biol 278, 473-481 (2005). 21. Lovell-Badge, R., Canning, C. & Sekido, R. Sex-determining genes in mice: building pathways. Novartis Found Symp 244, 4-18; discussion 18-22, 35-42, 253-257 (2002). 22. Pannetier, M., et al. Goat SRY induces testis development in XX transgenic mice. FEBS Lett 580, 3715-3720 (2006). 23. Brennan, J. & Capel, B. One tissue, two fates: molecular genetic events that underlie testis versus ovary development. Nat Rev Genet 5, 509-521 (2004). 24. Ross, A.J. & Capel, B. Signaling at the crossroads of gonad development. Trends Endocrinol Metab 16, 19-25 (2005). 25. Correa, R.V., et al. A microdeletion in the ligand binding domain of human steroidogenic factor 1 causes XY sex reversal without adrenal insufficiency. J Clin Endocrinol Metab 89, 1767-1772 (2004). 26. Lin, L., et al. Heterozygous missense mutations in steroidogenic factor 1 (SF1/Ad4BP, NR5A1) are associated with 46,XY disorders of sex development with normal adrenal function. J Clin Endocrinol Metab 92, 991-999 (2007). 27. Mallet, D., et al. Gonadal dysgenesis without adrenal insufficiency in a 46, XY patient heterozygous for the nonsense C16X mutation: a case of SF1 haploinsufficiency. J Clin Endocrinol Metab 89, 4829-4832 (2004). 28. Pilon, N., et al. Porcine SRY promoter is a target for steroidogenic factor 1. Biol Reprod 68, 1098-1106 (2003). 29. Miyamoto, Y., Taniguchi, H., Hamel, F., Silversides, D.W. & Viger, R.S. A GATA4/WT1 cooperation regulates transcription of genes required for mammalian sex determination and differentiation. BMC Mol Biol 9, 44 (2008). 30. Sekido, R. & Lovell-Badge, R. Sex determination involves synergistic action of SRY and SF1 on a specific Sox9 enhancer. Nature 453, 930-934 (2008). 31. Gasca, S., et al. A nuclear export signal within the high mobility group domain regulates the nucleocytoplasmic translocation of SOX9 during sexual determination. Proc Natl Acad Sci U S A 99, 11199-11204 (2002). 32. Shen, J.H. & Ingraham, H.A. Regulation of the orphan nuclear receptor steroidogenic factor 1 by Sox proteins. Mol Endocrinol 16, 529-540 (2002). 33. Morinaga, C., et al. The hotei mutation of medaka in the anti-Mullerian hormone receptor causes the dysregulation of germ cell and sexual development. Proc Natl Acad Sci U S A 104, 9691-9696 (2007). 34. Chaboissier, M.C., et al. Functional analysis of Sox8 and Sox9 during sex determination in the mouse. Development 131, 1891-1901 (2004). 35. MacLean, G., Li, H., Metzger, D., Chambon, P. & Petkovich, M. Apoptotic extinction of germ cells in testes of Cyp26b1 knockout mice. Endocrinology 148, 4560-4567 (2007). 36. Koubova, J., et al. Retinoic acid regulates sex-specific timing of meiotic initiation in mice. Proc Natl Acad Sci U S A 103, 2474-2479 (2006). 37. Bowles, J., et al. Retinoid signaling determines germ cell fate in mice. Science 312, 596-600 (2006). 38. Bowles, J. & Koopman, P. Retinoic acid, meiosis and germ cell fate in mammals. Development 134, 3401-3411 (2007). 39. Smith, C.A., Roeszler, K.N., Bowles, J., Koopman, P. & Sinclair, A.H. Onset of meiosis in the chicken embryo; evidence of a role for retinoic acid. BMC Dev Biol 8, 85 (2008). 40. Urven, L.E., Erickson, C.A., Abbott, U.K. & McCarrey, J.R. Analysis of germ line development in the chick embryo using an anti-mouse EC cell antibody. Development 103, 299-304 (1988). 41. Matzuk, M.M. & Lamb, D.J. The biology of infertility: research advances and clinical challenges. Nat Med 14, 1197-1213 (2008). 42. Koopman, P., Gubbay, J., Vivian, N., Goodfellow, P. & Lovell-Badge, R. Male development of chromosomally female mice transgenic for Sry. Nature 351, 117-121 (1991). 43. Lovell-Badge, R. & Robertson, E. XY female mice resulting from a heritable mutation in the primary testis-determining gene, Tdy. Development 109, 635-646 (1990). 44. Vidal, V.P., Chaboissier, M.C., de Rooij, D.G. & Schedl, A. Sox9 induces testis development in XX transgenic mice. Nat Genet 28, 216-217 (2001). 45. Colvin, J.S., Green, R.P., Schmahl, J., Capel, B. & Ornitz, D.M. Male-to-female sex reversal in mice lacking fibroblast growth factor 9. Cell 104, 875-889 (2001). 46. Kim, Y., et al. Fgf9 and Wnt4 act as antagonistic signals to regulate mammalian sex determination. PLoS Biol 4, e187 (2006). 47. Hess, R.A. Quantitative and qualitative characteristics of the stages and transitions in the cycle of the rat seminiferous epithelium: light microscopic observations of perfusion-fixed and plastic-embedded testes. Biol Reprod 43, 525-542 (1990). 48. Hess, R.A., Schaeffer, D.J., Eroschenko, V.P. & Keen, J.E. Frequency of the stages in the cycle of the seminiferous epithelium in the rat. Biol Reprod 43, 517-524 (1990). 49. Lin, M. & Jones, R.C. Spatial arrangement of the stages of the cycle of the seminiferous epithelium in the Japanese quail, Coturnix coturnix japonica. J Reprod Fertil 90, 361-367 (1990). 50. Lin, M., Jones, R.C. & Blackshaw, A.W. The cycle of the seminiferous epithelium in the Japanese quail (Coturnix coturnix japonica) and estimation of its duration. J Reprod Fertil 88, 481-490 (1990). 51. Hooper, J.E. & Scott, M.P. Communicating with Hedgehogs. Nat Rev Mol Cell Biol 6, 306-317 (2005). 52. Huangfu, D. & Anderson, K.V. Signaling from Smo to Ci/Gli: conservation and divergence of Hedgehog pathways from Drosophila to vertebrates. Development 133, 3-14 (2006). 53. Jiang, J. & Hui, C.C. Hedgehog signaling in development and cancer. Dev Cell 15, 801-812 (2008). 54. Lum, L. & Beachy, P.A. The Hedgehog response network: sensors, switches, and routers. Science 304, 1755-1759 (2004). 55. Nusslein-Volhard, C. & Wieschaus, E. Mutations affecting segment number and polarity in Drosophila. Nature 287, 795-801 (1980). 56. Chang, D.T., et al. Products, genetic linkage and limb patterning activity of a murine hedgehog gene. Development 120, 3339-3353 (1994). 57. Shimeld, S.M. The evolution of the hedgehog gene family in chordates: insights from amphioxus hedgehog. Dev Genes Evol 209, 40-47 (1999). 58. Inoue, Y., et al. Expression patterns of hedgehog, wingless, and decapentaplegic during gut formation of Gryllus bimaculatus (cricket). Mech Dev 110, 245-248 (2002). 59. Aspock, G., Kagoshima, H., Niklaus, G. & Burglin, T.R. Caenorhabditis elegans has scores of hedgehog-related genes: sequence and expression analysis. Genome Res 9, 909-923 (1999). 60. Kuwabara, P.E., Lee, M.H., Schedl, T. & Jefferis, G.S. A C. elegans patched gene, ptc-1, functions in germ-line cytokinesis. Genes Dev 14, 1933-1944 (2000). 61. Echelard, Y., et al. Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell 75, 1417-1430 (1993). 62. Krauss, S., Concordet, J.P. & Ingham, P.W. A functionally conserved homolog of the Drosophila segment polarity gene hh is expressed in tissues with polarizing activity in zebrafish embryos. Cell 75, 1431-1444 (1993). 63. Riddle, R.D., Johnson, R.L., Laufer, E. & Tabin, C. Sonic hedgehog mediates the polarizing activity of the ZPA. Cell 75, 1401-1416 (1993). 64. Lee, J.J., von Kessler, D.P., Parks, S. & Beachy, P.A. Secretion and localized transcription suggest a role in positional signaling for products of the segmentation gene hedgehog. Cell 71, 33-50 (1992). 65. Chiang, C., et al. Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 383, 407-413 (1996). 66. Bitgood, M.J., Shen, L. & McMahon, A.P. Sertoli cell signaling by Desert hedgehog regulates the male germline. Curr Biol 6, 298-304 (1996). 67. Porter, J.A., Young, K.E. & Beachy, P.A. Cholesterol modification of hedgehog signaling proteins in animal development. Science 274, 255-259 (1996). 68. St-Jacques, B., Hammerschmidt, M. & McMahon, A.P. Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev 13, 2072-2086 (1999). 69. Bitgood, M.J. & McMahon, A.P. Hedgehog and Bmp genes are coexpressed at many diverse sites of cell-cell interaction in the mouse embryo. Dev Biol 172, 126-138 (1995). 70. Eaton, S. Multiple roles for lipids in the Hedgehog signalling pathway. Nat Rev Mol Cell Biol 9, 437-445 (2008). 71. Farzan, S.F., Singh, S., Schilling, N.S. & Robbins, D.J. The adventures of sonic hedgehog in development and repair. III. Hedgehog processing and biological activity. Am J Physiol Gastrointest Liver Physiol 294, G844-849 (2008). 72. Guerrero, I. & Chiang, C. A conserved mechanism of Hedgehog gradient formation by lipid modifications. Trends Cell Biol 17, 1-5 (2007). 73. Marigo, V., Davey, R.A., Zuo, Y., Cunningham, J.M. & Tabin, C.J. Biochemical evidence that patched is the Hedgehog receptor. Nature 384, 176-179 (1996). 74. Stone, D.M., et al. The tumour-suppressor gene patched encodes a candidate receptor for Sonic hedgehog. Nature 384, 129-134 (1996). 75. Yao, S., Lum, L. & Beachy, P. The ihog cell-surface proteins bind Hedgehog and mediate pathway activation. Cell 125, 343-357 (2006). 76. Zheng, X., Mann, R.K., Sever, N. & Beachy, P.A. Genetic and biochemical definition of the Hedgehog receptor. Genes Dev 24, 57-71 (2010). 77. Tenzen, T., et al. The cell surface membrane proteins Cdo and Boc are components and targets of the Hedgehog signaling pathway and feedback network in mice. Dev Cell 10, 647-656 (2006). 78. Taipale, J., Cooper, M.K., Maiti, T. & Beachy, P.A. Patched acts catalytically to suppress the activity of Smoothened. Nature 418, 892-897 (2002). 79. Robbins, D.J., et al. Hedgehog elicits signal transduction by means of a large complex containing the kinesin-related protein costal2. Cell 90, 225-234 (1997). 80. Sisson, J.C., Ho, K.S., Suyama, K. & Scott, M.P. Costal2, a novel kinesin-related protein in the Hedgehog signaling pathway. Cell 90, 235-245 (1997). 81. Cheung, H.O., et al. The kinesin protein Kif7 is a critical regulator of Gli transcription factors in mammalian hedgehog signaling. Sci Signal 2, ra29 (2009). 82. Endoh-Yamagami, S., et al. The mammalian Cos2 homolog Kif7 plays an essential role in modulating Hh signal transduction during development. Curr Biol 19, 1320-1326 (2009). 83. Tay, S.Y., Ingham, P.W. & Roy, S. A homologue of the Drosophila kinesin-like protein Costal2 regulates Hedgehog signal transduction in the vertebrate embryo. Development 132, 625-634 (2005). 84. Chen, M.H., Gao, N., Kawakami, T. & Chuang, P.T. Mice deficient in the fused homolog do not exhibit phenotypes indicative of perturbed hedgehog signaling during embryonic development. Mol Cell Biol 25, 7042-7053 (2005). 85. Chen, M.H., et al. Cilium-independent regulation of Gli protein function by Sufu in Hedgehog signaling is evolutionarily conserved. Genes Dev 23, 1910-1928 (2009). 86. Svard, J., et al. Genetic elimination of Suppressor of fused reveals an essential repressor function in the mammalian Hedgehog signaling pathway. Dev Cell 10, 187-197 (2006). 87. Preat, T. Characterization of Suppressor of fused, a complete suppressor of the fused segment polarity gene of Drosophila melanogaster. Genetics 132, 725-736 (1992). 88. Hui, C.C., Slusarski, D., Platt, K.A., Holmgren, R. & Joyner, A.L. Expression of three mouse homologs of the Drosophila segment polarity gene cubitus interruptus, Gli, Gli-2, and Gli-3, in ectoderm- and mesoderm-derived tissues suggests multiple roles during postimplantation development. Dev Biol 162, 402-413 (1994). 89. Sasaki, H., Nishizaki, Y., Hui, C., Nakafuku, M. & Kondoh, H. Regulation of Gli2 and Gli3 activities by an amino-terminal repression domain: implication of Gli2 and Gli3 as primary mediators of Shh signaling. Development 126, 3915-3924 (1999). 90. Jia, J., et al. Phosphorylation by double-time/CKIepsilon and CKIalpha targets cubitus interruptus for Slimb/beta-TRCP-mediated proteolytic processing. Dev Cell 9, 819-830 (2005). 91. Jia, J. & Jiang, J. Decoding the Hedgehog signal in animal development. Cell Mol Life Sci 63, 1249-1265 (2006). 92. Aza-Blanc, P., Lin, H.Y., Ruiz i Altaba, A. & Kornberg, T.B. Expression of the vertebrate Gli proteins in Drosophila reveals a distribution of activator and repressor activities. Development 127, 4293-4301 (2000). 93. Methot, N. & Basler, K. An absolute requirement for Cubitus interruptus in Hedgehog signaling. Development 128, 733-742 (2001). 94. Smelkinson, M.G., Zhou, Q. & Kalderon, D. Regulation of Ci-SCFSlimb binding, Ci proteolysis, and hedgehog pathway activity by Ci phosphorylation. Dev Cell 13, 481-495 (2007). 95. Barnfield, P.C., Zhang, X., Thanabalasingham, V., Yoshida, M. & Hui, C.C. Negative regulation of Gli1 and Gli2 activator function by Suppressor of fused through multiple mechanisms. Differentiation 73, 397-405 (2005). 96. Pan, Y., Bai, C.B., Joyner, A.L. & Wang, B. Sonic hedgehog signaling regulates Gli2 transcriptional activity by suppressing its processing and degradation. Mol Cell Biol 26, 3365-3377 (2006). 97. Park, H.L., et al. Mouse Gli1 mutants are viable but have defects in SHH signaling in combination with a Gli2 mutation. Development 127, 1593-1605 (2000). 98. McMahon, A.P., Ingham, P.W. & Tabin, C.J. Developmental roles and clinical significance of hedgehog signaling. Curr Top Dev Biol 53, 1-114 (2003). 99. Yao, H.H., Whoriskey, W. & Capel, B. Desert Hedgehog/Patched 1 signaling specifies fetal Leydig cell fate in testis organogenesis. Genes Dev 16, 1433-1440 (2002). 100. Wijgerde, M., Ooms, M., Hoogerbrugge, J.W. & Grootegoed, J.A. Hedgehog signaling in mouse ovary: Indian hedgehog and desert hedgehog from granulosa cells induce target gene expression in developing theca cells. Endocrinology 146, 3558-3566 (2005). 101. Clark, A.M., Garland, K.K. & Russell, L.D. Desert hedgehog (Dhh) gene is required in the mouse testis for formation of adult-type Leydig cells and normal development of peritubular cells and seminiferous tubules. Biol Reprod 63, 1825-1838 (2000). 102. Park, S.Y., Tong, M. & Jameson, J.L. Distinct roles for steroidogenic factor 1 and desert hedgehog pathways in fetal and adult Leydig cell development. Endocrinology 148, 3704-3710 (2007). 103. Lanske, B., et al. PTH/PTHrP receptor in early development and Indian hedgehog-regulated bone growth. Science 273, 663-666 (1996). 104. Colnot, C., et al. Indian hedgehog synchronizes skeletal angiogenesis and perichondrial maturation with cartilage development. Development 132, 1057-1067 (2005). 105. Pagan-Westphal, S.M. & Tabin, C.J. The transfer of left-right positional information during chick embryogenesis. Cell 93, 25-35 (1998). 106. Schilling, T.F., Concordet, J.P. & Ingham, P.W. Regulation of left-right asymmetries in the zebrafish by Shh and BMP4. Dev Biol 210, 277-287 (1999). 107. Watanabe, Y. & Nakamura, H. Control of chick tectum territory along dorsoventral axis by Sonic hedgehog. Development 127, 1131-1140 (2000). 108. Pepicelli, C.V., Lewis, P.M. & McMahon, A.P. Sonic hedgehog regulates branching morphogenesis in the mammalian lung. Curr Biol 8, 1083-1086 (1998). 109. Szczepny, A., Hime, G.R. & Loveland, K.L. Expression of hedgehog signalling components in adult mouse testis. Dev Dyn 235, 3063-3070 (2006). 110. Morales, C.R., Fox, A., El-Alfy, M., Ni, X. & Argraves, W.S. Expression of Patched-1 and Smoothened in testicular meiotic and post-meiotic cells. Microsc Res Tech 72, 809-815 (2009). 111. Sekido, R. & Lovell-Badge, R. Mechanisms of gonadal morphogenesis are not conserved between chick and mouse. Dev Biol 302, 132-142 (2007). 112. Huang, C.C. & Yao, H.H. Diverse functions of Hedgehog signaling in formation and physiology of steroidogenic organs. Mol Reprod Dev 77, 489-496 (2010). 113. Hui-Ru, W. Developmantal biology, Taiwan (2008). 114. Russell, M.C., Cowan, R.G., Harman, R.M., Walker, A.L. & Quirk, S.M. The hedgehog signaling pathway in the mouse ovary. Biol Reprod 77, 226-236 (2007). 115. Po-Liang, C. Taiwan (2010). 116. Chen, J.K., Taipale, J., Cooper, M.K. & Beachy, P.A. Inhibition of Hedgehog signaling by direct binding of cyclopamine to Smoothened. Genes Dev 16, 2743-2748 (2002). 117. Incardona, J.P., Gaffield, W., Kapur, R.P. & Roelink, H. The teratogenic Veratrum alkaloid cyclopamine inhibits sonic hedgehog signal transduction. Development 125, 3553-3562 (1998). 118. August, G.P., Grumbach, M.M. & Kaplan, S.L. Hormonal changes in puberty. 3. Correlation of plasma testosterone, LH, FSH, testicular size, and bone age with male pubertal development. J Clin Endocrinol Metab 34, 319-326 (1972). 119. Dame, C., et al. Wilms tumor suppressor, Wt1, is a transcriptional activator of the erythropoietin gene. Blood 107, 4282-4290 (2006). 120. Wilson, C.W. & Chuang, P.T. Mechanism and evolution of cytosolic Hedgehog signal transduction. Development 137, 2079-2094 (2010). 121. Varjosalo, M. & Taipale, J. Hedgehog: functions and mechanisms. Genes Dev 22, 2454-2472 (2008).
Hedgehog(Hh)訊息傳導路徑在脊椎動物的很多組織和器官的發育都有重要的影響。在脊椎動物中目前主要有3個不同的Hh蛋白質:Sonic hedgehog (Shh), Indian hedgehog(Ihh) and Desert hedgehog(Dhh).目前已經有文獻指出,Dhh基因被剔除的公鼠會產生不育的情形。目前實驗室中,在先前的實驗已經了解到了在雞的Genome裡面沒有Dhh基因的存在。但是藉著RT-PCR的技術卻有偵測到在公雞睪丸內的Hh訊息傳遞路徑仍然是有被活化的狀態。在本篇的研究也利用了螢光免疫染色的技術,證明了Hh蛋白質確實早在胚胎時期的胚胎內就已經有所表現,而且雄性生殖性所表現的蛋白質量遠多於雌性生殖性內的蛋白質量。在出生後1到20週的公雞睪丸裡面,同時也發現到了有Hh蛋白質表現在Sertoli cells裡面。在之後所設計干擾Hh訊息傳遞路徑的實驗中,也發現使用Cyclopamine阻斷了Hh的訊息傳遞路徑的活化,也使得公雞睪丸裡面的Leydig cells和Germ cells的發育成熟受到影響。之後也藉著毛髮細胞的體外培養系統,得以在實驗中建立一個Shh蛋白質的提供細胞以做為過量表現Shh蛋白質材料之一。藉由這個系統,發現了在公雞睪丸內過量的活化Shh的訊息傳導路徑也將會影響到Germ cells的發育成熟。這些都說明了Hh的訊息傳導路徑確實對公雞睪丸的發育是有所影響的。在本篇研究中,Shh訊息傳遞路徑確實會在公雞睪丸裡面存在與活化。

The Hedgehog(Hh) signaling pathway plays an important role in controlling cell growth, survival and the development of many tissues and organs. There are three members of the vertebrate Hh family: Sonic hedgehog (Shh), Indian hedgehog (Ihh) and Desert hedgehog (Dhh). The Dhh gene knockout made the male mice sterility. Previous studies from our laboratory show that Dhh absent in chicken genome, but the RT-PCR showed the Hh signaling pathway still work. In our data, the immunohistochemistry provided an evidence of Hh proteins expressed early in embryo genital epithelium, and there were many well signals in male gonad than in female. After birthing 1 week till 20 weeks, we were still able to detect the Hh proteins. When we used cyclopamine to disrupt Hh signaling pathway, the development of Leydig cells and germ cells had been affect. And this study had also used in vitro hair cell culture system. By this set of system, we could establish a provider to offer Sonic hedgehog proteins. Hh protein ectopic expression had also affected the germ cells development. This showed the Hh indeed involved in testis development. In this study offered evidences that Shh could exist in testis of birds, and Hh pathway would affect the testis development as in mammals.
其他識別: U0005-0502201120482300
Appears in Collections:生命科學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.