Please use this identifier to cite or link to this item:
標題: 小鼠胚幹細胞衍生之神經先驅細胞的分化與去分化
Differentiation and dedifferentiation of embryonic stem cell-derived neural progenitor cells
作者: 陳靜雯
Chen, Ching-Wen
關鍵字: embryonic stem cell;胚幹細胞;neural differentation;dedifferentiation;神經分化;去分化
出版社: 生命科學系所
引用: Abulaiti, A., Fikaris, A. J., Tsygankova, O. M. and Meinkoth, J. L. (2006). Ras induces chromosome instability and abrogation of the DNA damage response. Cancer Res 66, 10505-12. Alison, M. R., Poulsom, R., Forbes, S. and Wright, N. A. (2002). An introduction to stem cells. J Pathol 197, 419-23. Amura, C. R., Marek, L., Winn, R. A. and Heasley, L. E. (2005). Inhibited neurogenesis in JNK1-deficient embryonic stem cells. Mol Cell Biol 25, 10791-802. Arnhold, S., Klein, H., Semkova, I., Addicks, K. and Schraermeyer, U. (2004). Neurally selected embryonic stem cells induce tumor formation after long-term survival following engraftment into the subretinal space. Invest Ophthalmol Vis Sci 45, 4251-5. Aubert, J., Dunstan, H., Chambers, I. and Smith, A. (2002). Functional gene screening in embryonic stem cells implicates Wnt antagonism in neural differentiation. Nat Biotechnol 20, 1240-5. Aubert, J., Stavridis, M. P., Tweedie, S., O''Reilly, M., Vierlinger, K., Li, M., Ghazal, P., Pratt, T., Mason, J. O., Roy, D. et al. (2003). Screening for mammalian neural genes via fluorescence-activated cell sorter purification of neural precursors from Sox1-gfp knock-in mice. Proc Natl Acad Sci U S A 100 Suppl 1, 11836-41. Aubin, J., Davy, A. and Soriano, P. (2004). In vivo convergence of BMP and MAPK signaling pathways: impact of differential Smad1 phosphorylation on development and homeostasis. Genes Dev 18, 1482-94. Auerbach, R., Wang, S. J., Yu, D., Gilligan, B. and Lu, L. S. (1998). Role of endothelium in the control of mouse yolk sac stem cell differentiation. Dev Comp Immunol 22, 333-8. Bao, S., Tang, F., Li, X., Hayashi, K., Gillich, A., Lao, K. and Surani, M. A. (2009). Epigenetic reversion of post-implantation epiblast to pluripotent embryonic stem cells. Nature 461, 1292-5. Beddington, R. S. (1994). Induction of a second neural axis by the mouse node. Development 120, 613-20. Brons, I. G., Smithers, L. E., Trotter, M. W., Rugg-Gunn, P., Sun, B., Chuva de Sousa Lopes, S. M., Howlett, S. K., Clarkson, A., Ahrlund-Richter, L., Pedersen, R. A. et al. (2007). Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448, 191-5. Brustle, O., Jones, K. N., Learish, R. D., Karram, K., Choudhary, K., Wiestler, O. D., Duncan, I. D. and McKay, R. D. (1999). Embryonic stem cell-derived glial precursors: a source of myelinating transplants. Science 285, 754-6. Burdon, T., Stracey, C., Chambers, I., Nichols, J. and Smith, A. (1999). Suppression of SHP-2 and ERK signalling promotes self-renewal of mouse embryonic stem cells. Dev Biol 210, 30-43. Cai, G., Wang, J., Xin, X., Ke, Z. and Luo, J. (2007). Phosphorylation of glycogen synthase kinase-3 beta at serine 9 confers cisplatin resistance in ovarian cancer cells. Int J Oncol 31, 657-62. Cai, J., Li, W., Su, H., Qin, D., Yang, J., Zhu, F., Xu, J., He, W., Guo, X., Labuda, K. et al. (2010). Generation of human induced pluripotent stem cells from umbilical cord matrix and amniotic membrane mesenchymal cells. J Biol Chem 285, 11227-34. Cazillis, M., Rasika, S., Mani, S., Gressens, P. and Lelievre, V. (2006). In vitro induction of neural differentiation of embryonic stem (ES) cells closely mimics molecular mechanisms of embryonic brain development. Pediatr Res 59, 48R-53R. Chen CW, L. C., Chiu IM, Shen SC, Pan HC, Lee KH, Lin SZ, Su HL. (2010). The signals of FGFs on the neurogenesis of embryonic stem cells. Journal of biomedical science 17, 33. Chen, D., Zhao, M. and Mundy, G. R. (2004). Bone morphogenetic proteins. Growth Factors 22, 233-41. Cho, H. J., Lee, C. S., Kwon, Y. W., Paek, J. S., Lee, S. H., Hur, J., Lee, E. J., Roh, T. Y., Chu, I. S., Leem, S. H. et al. (2010). Induction of pluripotent stem cells from adult somatic cells by protein-based reprogramming without genetic manipulation. Blood 116, 386-95. Chou, Y. F., Chen, H. H., Eijpe, M., Yabuuchi, A., Chenoweth, J. G., Tesar, P., Lu, J., McKay, R. D. and Geijsen, N. (2008). The growth factor environment defines distinct pluripotent ground states in novel blastocyst-derived stem cells. Cell 135, 449-61. Chung, S., Shin, B. S., Hedlund, E., Pruszak, J., Ferree, A., Kang, U. J., Isacson, O. and Kim, K. S. (2006). Genetic selection of sox1GFP-expressing neural precursors removes residual tumorigenic pluripotent stem cells and attenuates tumor formation after transplantation. J Neurochem 97, 1467-80. Cross, D. A., Alessi, D. R., Cohen, P., Andjelkovich, M. and Hemmings, B. A. (1995). Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378, 785-9. Dailey, L., Ambrosetti, D., Mansukhani, A. and Basilico, C. (2005). Mechanisms underlying differential responses to FGF signaling. Cytokine Growth Factor Rev 16, 233-47. Dale, T. C. (1998). Signal transduction by the Wnt family of ligands. Biochem J 329 ( Pt 2), 209-23. de Caestecker, M. (2004). The transforming growth factor-beta superfamily of receptors. Cytokine Growth Factor Rev 15, 1-11. De Robertis, E. M. and Kuroda, H. (2004). Dorsal-ventral patterning and neural induction in Xenopus embryos. Annu Rev Cell Dev Biol 20, 285-308. Delaune, E., Lemaire, P. and Kodjabachian, L. (2005). Neural induction in Xenopus requires early FGF signalling in addition to BMP inhibition. Development 132, 299-310. Dihne, M., Bernreuther, C., Hagel, C., Wesche, K. O. and Schachner, M. (2006). Embryonic stem cell-derived neuronally committed precursor cells with reduced teratoma formation after transplantation into the lesioned adult mouse brain. Stem Cells 24, 1458-66. Dottori, M., Gross, M. K., Labosky, P. and Goulding, M. (2001). The winged-helix transcription factor Foxd3 suppresses interneuron differentiation and promotes neural crest cell fate. Development 128, 4127-38. Edlund, T. and Jessell, T. M. (1999). Progression from extrinsic to intrinsic signaling in cell fate specification: a view from the nervous system. Cell 96, 211-24. Eswarakumar, V. P., Lax, I. and Schlessinger, J. (2005). Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev 16, 139-49. Etoh, T., Kanai, Y., Ushijima, S., Nakagawa, T., Nakanishi, Y., Sasako, M., Kitano, S. and Hirohashi, S. (2004). Increased DNA methyltransferase 1 (DNMT1) protein expression correlates significantly with poorer tumor differentiation and frequent DNA hypermethylation of multiple CpG islands in gastric cancers. Am J Pathol 164, 689-99. Evans, M. J. and Kaufman, M. H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154-6. Farcas, R., Schneider, E., Frauenknecht, K., Kondova, I., Bontrop, R., Bohl, J., Navarro, B., Metzler, M., Zischler, H., Zechner, U. et al. (2009). Differences in DNA methylation patterns and expression of the CCRK gene in human and nonhuman primate cortices. Mol Biol Evol 26, 1379-89. Fasano, C. A., Phoenix, T. N., Kokovay, E., Lowry, N., Elkabetz, Y., Dimos, J. T., Lemischka, I. R., Studer, L. and Temple, S. (2009). Bmi-1 cooperates with Foxg1 to maintain neural stem cell self-renewal in the forebrain. Genes Dev 23, 561-74. Forman-Kay, J. D. and Pawson, T. (1999). Diversity in protein recognition by PTB domains. Curr Opin Struct Biol 9, 690-5. Fuentealba, L. C., Eivers, E., Ikeda, A., Hurtado, C., Kuroda, H., Pera, E. M. and De Robertis, E. M. (2007). Integrating patterning signals: Wnt/GSK3 regulates the duration of the BMP/Smad1 signal. Cell 131, 980-93. Fukuda, H., Takahashi, J., Watanabe, K., Hayashi, H., Morizane, A., Koyanagi, M., Sasai, Y. and Hashimoto, N. (2006). Fluorescence-activated cell sorting-based purification of embryonic stem cell-derived neural precursors averts tumor formation after transplantation. Stem Cells 24, 763-71. Gage, F. H. (2000). Mammalian neural stem cells. Science 287, 1433-8. Guo, G., Yang, J., Nichols, J., Hall, J. S., Eyres, I., Mansfield, W. and Smith, A. (2009). Klf4 reverts developmentally programmed restriction of ground state pluripotency. Development 136, 1063-9. Hamburger, V. (1969). Hans Spemann and the organizer concept. Experientia 25, 1121-5. Heeg-Truesdell, E. and LaBonne, C. (2006). Neural induction in Xenopus requires inhibition of Wnt-beta-catenin signaling. Dev Biol 298, 71-86. Hemmati-Brivanlou, A. and Melton, D. (1997). Vertebrate neural induction. Annu Rev Neurosci 20, 43-60. Hitoshi, S., Seaberg, R. M., Koscik, C., Alexson, T., Kusunoki, S., Kanazawa, I., Tsuji, S. and van der Kooy, D. (2004). Primitive neural stem cells from the mammalian epiblast differentiate to definitive neural stem cells under the control of Notch signaling. Genes Dev 18, 1806-11. Hochedlinger, K. and Plath, K. (2009). Epigenetic reprogramming and induced pluripotency. Development 136, 509-23. Honda, A., Hirose, M., Hatori, M., Matoba, S., Miyoshi, H., Inoue, K. and Ogura, A. (2010). Generation of induced pluripotent stem cells in rabbits: potential experimental models for human regenerative medicine. J Biol Chem 285, 31362-31369. Hongo, I., Kengaku, M. and Okamoto, H. (1999). FGF signaling and the anterior neural induction in Xenopus. Dev Biol 216, 561-81. Hsieh, J., Aimone, J. B., Kaspar, B. K., Kuwabara, T., Nakashima, K. and Gage, F. H. (2004). IGF-I instructs multipotent adult neural progenitor cells to become oligodendrocytes. J Cell Biol 164, 111-22. Ip, Y. T. and Davis, R. J. (1998). Signal transduction by the c-Jun N-terminal kinase (JNK)--from inflammation to development. Curr Opin Cell Biol 10, 205-19. Jaenisch, R. and Bird, A. (2003). Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33 Suppl, 245-54. Johnson, D. E. and Williams, L. T. (1993). Structural and functional diversity in the FGF receptor multigene family. Adv Cancer Res 60, 1-41. Johnson, G. L. and Lapadat, R. (2002). Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298, 1911-2. Kalani, M. Y., Cheshier, S. H., Cord, B. J., Bababeygy, S. R., Vogel, H., Weissman, I. L., Palmer, T. D. and Nusse, R. (2008). Wnt-mediated self-renewal of neural stem/progenitor cells. Proc Natl Acad Sci U S A 105, 16970-5. Karnoub, A. E. and Weinberg, R. A. (2008). Ras oncogenes: split personalities. Nat Rev Mol Cell Biol 9, 517-31. Katoh, M. and Katoh, M. (2007). WNT signaling pathway and stem cell signaling network. Clin Cancer Res 13, 4042-5. Kawasaki, H., Mizuseki, K., Nishikawa, S., Kaneko, S., Kuwana, Y., Nakanishi, S., Nishikawa, S. I. and Sasai, Y. (2000). Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron 28, 31-40. Kingsley, D. M. (1994). The TGF-beta superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes Dev 8, 133-46. Kohga, H. and Obata, K. (1992). Retinoic acid-induced neural tube defects with multiple canals in the chick: immunohistochemistry with monoclonal antibodies. Neurosci Res 13, 175-87. Kondo, T. and Raff, M. (2000). Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells. Science 289, 1754-7. Kondo, T. and Raff, M. (2004). Chromatin remodeling and histone modification in the conversion of oligodendrocyte precursors to neural stem cells. Genes Dev 18, 2963-72. Kornblum, H. I. (2007). Introduction to neural stem cells. Stroke 38, 810-6. Kos, R., Reedy, M. V., Johnson, R. L. and Erickson, C. A. (2001). The winged-helix transcription factor FoxD3 is important for establishing the neural crest lineage and repressing melanogenesis in avian embryos. Development 128, 1467-79. Koshida, S., Shinya, M., Nikaido, M., Ueno, N., Schulte-Merker, S., Kuroiwa, A. and Takeda, H. (2002). Inhibition of BMP activity by the FGF signal promotes posterior neural development in zebrafish. Dev Biol 244, 9-20. Kouhara, H., Hadari, Y. R., Spivak-Kroizman, T., Schilling, J., Bar-Sagi, D., Lax, I. and Schlessinger, J. (1997). A lipid-anchored Grb2-binding protein that links FGF-receptor activation to the Ras/MAPK signaling pathway. Cell 89, 693-702. Kuan, C. Y., Yang, D. D., Samanta Roy, D. R., Davis, R. J., Rakic, P. and Flavell, R. A. (1999). The Jnk1 and Jnk2 protein kinases are required for regional specific apoptosis during early brain development. Neuron 22, 667-76. Kulbatski, I., Mothe, A. J., Nomura, H. and Tator, C. H. (2005). Endogenous and exogenous CNS derived stem/progenitor cell approaches for neurotrauma. Curr Drug Targets 6, 111-26. Kunath, T., Saba-El-Leil, M. K., Almousailleakh, M., Wray, J., Meloche, S. and Smith, A. (2007). FGF stimulation of the Erk1/2 signalling cascade triggers transition of pluripotent embryonic stem cells from self-renewal to lineage commitment. Development 134, 2895-902. Kuroda, H., Fuentealba, L., Ikeda, A., Reversade, B. and De Robertis, E. M. (2005). Default neural induction: neuralization of dissociated Xenopus cells is mediated by Ras/MAPK activation. Genes Dev 19, 1022-7. Kyriakis, J. M. and Avruch, J. (1996). Protein kinase cascades activated by stress and inflammatory cytokines. Bioessays 18, 567-77. Launay, C., Fromentoux, V., Shi, D. L. and Boucaut, J. C. (1996). A truncated FGF receptor blocks neural induction by endogenous Xenopus inducers. Development 122, 869-80. LaVaute, T. M., Yoo, Y. D., Pankratz, M. T., Weick, J. P., Gerstner, J. R. and Zhang, S. C. (2009). Regulation of neural specification from human embryonic stem cells by BMP and FGF. Stem Cells 27, 1741-9. Lee, K.-H., Tu, C.-F., Wu, S.-C. and Hsu, W.-C. (2003). Routine generation of green fluorescent chimeric mice with a high percentage of germline transmission by a novel embryonic stem cell line. J Chin Soc Anim Sci 32, 143-154. Lensch, M. W., Schlaeger, T. M., Zon, L. I. and Daley, G. Q. (2007). Teratoma formation assays with human embryonic stem cells: a rationale for one type of human-animal chimera. Cell Stem Cell 1, 253-8. Levine, A. J. and Brivanlou, A. H. (2007). Proposal of a model of mammalian neural induction. Dev Biol 308, 247-56. Levison, S. W. and Goldman, J. E. (1993). Both oligodendrocytes and astrocytes develop from progenitors in the subventricular zone of postnatal rat forebrain. Neuron 10, 201-12. Linker, C. and Stern, C. D. (2004). Neural induction requires BMP inhibition only as a late step, and involves signals other than FGF and Wnt antagonists. Development 131, 5671-81. Liu, F. (2003). Receptor-regulated Smads in TGF-beta signaling. Front Biosci 8, s1280-303. Loh, Y. H., Agarwal, S., Park, I. H., Urbach, A., Huo, H., Heffner, G. C., Kim, K., Miller, J. D., Ng, K. and Daley, G. Q. (2009). Generation of induced pluripotent stem cells from human blood. Blood 113, 5476-9. Lois, C. and Alvarez-Buylla, A. (1993). Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia. Proc Natl Acad Sci U S A 90, 2074-7. Lowry, W. E., Richter, L., Yachechko, R., Pyle, A. D., Tchieu, J., Sridharan, R., Clark, A. T. and Plath, K. (2008). Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc Natl Acad Sci U S A 105, 2883-8. Luskin, M. B. (1993). Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron 11, 173-89. Maden, M. (2007). Retinoic acid in the development, regeneration and maintenance of the nervous system. Nat Rev Neurosci 8, 755-65. Martin, G. R. (1981). Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A 78, 7634-8. Massague, J. and Wotton, D. (2000). Transcriptional control by the TGF-beta/Smad signaling system. Embo J 19, 1745-54. Mikkelsen, T. S., Hanna, J., Zhang, X., Ku, M., Wernig, M., Schorderet, P., Bernstein, B. E., Jaenisch, R., Lander, E. S. and Meissner, A. (2008). Dissecting direct reprogramming through integrative genomic analysis. Nature 454, 49-55. Mitsui, K., Tokuzawa, Y., Itoh, H., Segawa, K., Murakami, M., Takahashi, K., Maruyama, M., Maeda, M. and Yamanaka, S. (2003). The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113, 631-42. Mizuseki, K., Sakamoto, T., Watanabe, K., Muguruma, K., Ikeya, M., Nishiyama, A., Arakawa, A., Suemori, H., Nakatsuji, N., Kawasaki, H. et al. (2003). Generation of neural crest-derived peripheral neurons and floor plate cells from mouse and primate embryonic stem cells. Proc Natl Acad Sci U S A 100, 5828-33. Mohammadi, M., Dionne, C. A., Li, W., Li, N., Spivak, T., Honegger, A. M., Jaye, M. and Schlessinger, J. (1992). Point mutation in FGF receptor eliminates phosphatidylinositol hydrolysis without affecting mitogenesis. Nature 358, 681-4. Mohammadi, M., Olsen, S. K. and Ibrahimi, O. A. (2005). Structural basis for fibroblast growth factor receptor activation. Cytokine Growth Factor Rev 16, 107-37. Morgan, H. D., Santos, F., Green, K., Dean, W. and Reik, W. (2005). Epigenetic reprogramming in mammals. Hum Mol Genet 14 Spec No 1, R47-58. Nagao, M., Sugimori, M. and Nakafuku, M. (2007). Cross talk between notch and growth factor/cytokine signaling pathways in neural stem cells. Mol Cell Biol 27, 3982-94. Nishiguchi, S., Wood, H., Kondoh, H., Lovell-Badge, R. and Episkopou, V. (1998). Sox1 directly regulates the gamma-crystallin genes and is essential for lens development in mice. Genes Dev 12, 776-81. Nussbaum, J., Minami, E., Laflamme, M. A., Virag, J. A., Ware, C. B., Masino, A., Muskheli, V., Pabon, L., Reinecke, H. and Murry, C. E. (2007). Transplantation of undifferentiated murine embryonic stem cells in the heart: teratoma formation and immune response. Faseb J 21, 1345-57. Ogawa, K., Nishinakamura, R., Iwamatsu, Y., Shimosato, D. and Niwa, H. (2006). Synergistic action of Wnt and LIF in maintaining pluripotency of mouse ES cells. Biochem Biophys Res Commun 343, 159-66. Ornitz, D. M. and Itoh, N. (2001). Fibroblast growth factors. Genome Biol 2, reviews3005.1-12. Pages, G., Guerin, S., Grall, D., Bonino, F., Smith, A., Anjuere, F., Auberger, P. and Pouyssegur, J. (1999). Defective thymocyte maturation in p44 MAP kinase (Erk 1) knockout mice. Science 286, 1374-7. Pankratz, M. T., Li, X. J., Lavaute, T. M., Lyons, E. A., Chen, X. and Zhang, S. C. (2007). Directed neural differentiation of human embryonic stem cells via an obligated primitive anterior stage. Stem Cells 25, 1511-20. Patrie, K. M., Botelho, M. J., Franklin, K. and Chiu, I. M. (1999). Site-directed mutagenesis and molecular modeling identify a crucial amino acid in specifying the heparin affinity of FGF-1. Biochemistry 38, 9264-72. Pawson, T. (1995). Protein modules and signalling networks. Nature 373, 573-80. Pera, E. M., Ikeda, A., Eivers, E. and De Robertis, E. M. (2003). Integration of IGF, FGF, and anti-BMP signals via Smad1 phosphorylation in neural induction. Genes Dev 17, 3023-8. Pera, M. F., Andrade, J., Houssami, S., Reubinoff, B., Trounson, A., Stanley, E. G., Ward-van Oostwaard, D. and Mummery, C. (2004). Regulation of human embryonic stem cell differentiation by BMP-2 and its antagonist noggin. J Cell Sci 117, 1269-80. Pera, M. F. and Trounson, A. O. (2004). Human embryonic stem cells: prospects for development. Development 131, 5515-25. Perrier, A. L., Tabar, V., Barberi, T., Rubio, M. E., Bruses, J., Topf, N., Harrison, N. L. and Studer, L. (2004). Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc Natl Acad Sci U S A 101, 12543-8. Pevny, L. H., Sockanathan, S., Placzek, M. and Lovell-Badge, R. (1998). A role for SOX1 in neural determination. Development 125, 1967-78. Polakis, P. (2000). Wnt signaling and cancer. Genes Dev 14, 1837-51. Rajasingh, J., Lambers, E., Hamada, H., Bord, E., Thorne, T., Goukassian, I., Krishnamurthy, P., Rosen, K. M., Ahluwalia, D., Zhu, Y. et al. (2008). Cell-free embryonic stem cell extract-mediated derivation of multipotent stem cells from NIH3T3 fibroblasts for functional and anatomical ischemic tissue repair. Circ Res 102, e107-17. Reya, T., Duncan, A. W., Ailles, L., Domen, J., Scherer, D. C., Willert, K., Hintz, L., Nusse, R. and Weissman, I. L. (2003). A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 423, 409-14. Sado, T. and Ferguson-Smith, A. C. (2005). Imprinted X inactivation and reprogramming in the preimplantation mouse embryo. Hum Mol Genet 14 Spec No 1, R59-64. Sasai, Y., Lu, B., Steinbeisser, H. and De Robertis, E. M. (1995). Regulation of neural induction by the Chd and Bmp-4 antagonistic patterning signals in Xenopus. Nature 377, 757. Sasai, Y., Lu, B., Steinbeisser, H., Geissert, D., Gont, L. K. and De Robertis, E. M. (1994). Xenopus chordin: a novel dorsalizing factor activated by organizer-specific homeobox genes. Cell 79, 779-90. Sater, A. K., El-Hodiri, H. M., Goswami, M., Alexander, T. B., Al-Sheikh, O., Etkin, L. D. and Akif Uzman, J. (2003). Evidence for antagonism of BMP-4 signals by MAP kinase during Xenopus axis determination and neural specification. Differentiation 71, 434-44. Schlessinger, J. (2000). Cell signaling by receptor tyrosine kinases. Cell 103, 211-25. Sheng, G., dos Reis, M. and Stern, C. D. (2003). Churchill, a zinc finger transcriptional activator, regulates the transition between gastrulation and neurulation. Cell 115, 603-13. Smith, J. R., Vallier, L., Lupo, G., Alexander, M., Harris, W. A. and Pedersen, R. A. (2008). Inhibition of Activin/Nodal signaling promotes specification of human embryonic stem cells into neuroectoderm. Dev Biol 313, 107-17. Snow, M. H. and Bennett, D. (1978). Gastrulation in the mouse: assessment of cell populations in the epiblast of tw18/tw18 embryos. J Embryol Exp Morphol 47, 39-52. Sonntag, K. C., Pruszak, J., Yoshizaki, T., van Arensbergen, J., Sanchez-Pernaute, R. and Isacson, O. (2007). Enhanced yield of neuroepithelial precursors and midbrain-like dopaminergic neurons from human embryonic stem cells using the bone morphogenic protein antagonist noggin. Stem Cells 25, 411-8. Spagnoli, F. M. and Hemmati-Brivanlou, A. (2006). Guiding embryonic stem cells towards differentiation: lessons from molecular embryology. Curr Opin Genet Dev 16, 469-75. Spemann, H. (1938). Embrynoic development and induction. New Haven CT.: Yale University Press. Stark, K. L., McMahon, J. A. and McMahon, A. P. (1991). FGFR-4, a new member of the fibroblast growth factor receptor family, expressed in the definitive endoderm and skeletal muscle lineages of the mouse. Development 113, 641-51. Stavridis, M. P., Lunn, J. S., Collins, B. J. and Storey, K. G. (2007). A discrete period of FGF-induced Erk1/2 signalling is required for vertebrate neural specification. Development 134, 2889-94. Stern, C. D. (2006). Neural induction: 10 years on since the ''default model''. Curr Opin Cell Biol 18, 692-7. Stites, E. C. and Ravichandran, K. S. (2009). A systems perspective of ras signaling in cancer. Clin Cancer Res 15, 1510-3. Streit, A., Berliner, A. J., Papanayotou, C., Sirulnik, A. and Stern, C. D. (2000). Initiation of neural induction by FGF signalling before gastrulation. Nature 406, 74-8. Streit, A. and Stern, C. D. (1999). Establishment and maintenance of the border of the neural plate in the chick: involvement of FGF and BMP activity. Mech Dev 82, 51-66. Tabar, V., Panagiotakos, G., Greenberg, E. D., Chan, B. K., Sadelain, M., Gutin, P. H. and Studer, L. (2005). Migration and differentiation of neural precursors derived from human embryonic stem cells in the rat brain. Nat Biotechnol 23, 601-6. Takahashi-Yanaga, F., Shiraishi, F., Hirata, M., Miwa, Y., Morimoto, S. and Sasaguri, T. (2004). Glycogen synthase kinase-3beta is tyrosine-phosphorylated by MEK1 in human skin fibroblasts. Biochem Biophys Res Commun 316, 411-5. Taranger, C. K., Noer, A., Sorensen, A. L., Hakelien, A. M., Boquest, A. C. and Collas, P. (2005). Induction of dedifferentiation, genomewide transcriptional programming, and epigenetic reprogramming by extracts of carcinoma and embryonic stem cells. Mol Biol Cell 16, 5719-35. Temple, S. (2001). The development of neural stem cells. Nature 414, 112-7. Teramoto, K., Hara, Y., Kumashiro, Y., Chinzei, R., Tanaka, Y., Shimizu-Saito, K., Asahina, K., Teraoka, H. and Arii, S. (2005). Teratoma formation and hepatocyte differentiation in mouse liver transplanted with mouse embryonic stem cell-derived embryoid bodies. Transplant Proc 37, 285-6. Tesar, P. J., Chenoweth, J. G., Brook, F. A., Davies, T. J., Evans, E. P., Mack, D. L., Gardner, R. L. and McKay, R. D. (2007). New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448, 196-9. Tole, S., Kaprielian, Z., Ou, S. K. and Patterson, P. H. (1995). FORSE-1: a positionally regulated epitope in the developing rat central nervous system. J Neurosci 15, 957-69. Tournay, O. and Benezra, R. (1996). Transcription of the dominant-negative helix-loop-helix protein Id1 is regulated by a protein complex containing the immediate-early response gene Egr-1. Mol Cell Biol 16, 2418-30. Tropepe, V., Sibilia, M., Ciruna, B. G., Rossant, J., Wagner, E. F. and van der Kooy, D. (1999). Distinct neural stem cells proliferate in response to EGF and FGF in the developing mouse telencephalon. Dev Biol 208, 166-88. van Houdt, W. J., Hoogwater, F. J., de Bruijn, M. T., Emmink, B. L., Nijkamp, M. W., Raats, D. A., van der Groep, P., van Diest, P., Borel Rinkes, I. H. and Kranenburg, O. (2010). Oncogenic KRAS desensitizes colorectal tumor cells to epidermal growth factor receptor inhibition and activation. Neoplasia 12, 443-52. Varga, A. C. and Wrana, J. L. (2005). The disparate role of BMP in stem cell biology. Oncogene 24, 5713-21. Wakitani, S., Takaoka, K., Hattori, T., Miyazawa, N., Iwanaga, T., Takeda, S., Watanabe, T. K. and Tanigami, A. (2003). Embryonic stem cells injected into the mouse knee joint form teratomas and subsequently destroy the joint. Rheumatology (Oxford) 42, 162-5. Watanabe, K., Kamiya, D., Nishiyama, A., Katayama, T., Nozaki, S., Kawasaki, H., Watanabe, Y., Mizuseki, K. and Sasai, Y. (2005). Directed differentiation of telencephalic precursors from embryonic stem cells. Nat Neurosci 8, 288-96. Weinstein, D. C. and Hemmati-Brivanlou, A. (1999). Neural induction. Annu Rev Cell Dev Biol 15, 411-33. Wichterle, H., Lieberam, I., Porter, J. A. and Jessell, T. M. (2002). Directed differentiation of embryonic stem cells into motor neurons. Cell 110, 385-97. Wilson, S. I., Graziano, E., Harland, R., Jessell, T. M. and Edlund, T. (2000). An early requirement for FGF signalling in the acquisition of neural cell fate in the chick embryo. Curr Biol 10, 421-9. Wojtaszek, P. A., Heasley, L. E., Siriwardana, G. and Berl, T. (1998). Dominant-negative c-Jun NH2-terminal kinase 2 sensitizes renal inner medullary collecting duct cells to hypertonicity-induced lethality independent of organic osmolyte transport. J Biol Chem 273, 800-4. Xiao, L. and Lang, W. (2000). A dominant role for the c-Jun NH2-terminal kinase in oncogenic ras-induced morphologic transformation of human lung carcinoma cells. Cancer Res 60, 400-8. Xu, P., Yoshioka, K., Yoshimura, D., Tominaga, Y., Nishioka, T., Ito, M. and Nakabeppu, Y. (2003). In vitro development of mouse embryonic stem cells lacking JNK/stress-activated protein kinase-associated protein 1 (JSAP1) scaffold protein revealed its requirement during early embryonic neurogenesis. J Biol Chem 278, 48422-33. Yamanaka, S. and Blau, H. M. (2010). Nuclear reprogramming to a pluripotent state by three approaches. Nature 465, 704-12. Yamasaki, M., Miyake, A., Tagashira, S. and Itoh, N. (1996). Structure and expression of the rat mRNA encoding a novel member of the fibroblast growth factor family. J Biol Chem 271, 15918-21. Yang, J., Davies, R. J., Southwood, M., Long, L., Yang, X., Sobolewski, A., Upton, P. D., Trembath, R. C. and Morrell, N. W. (2008). Mutations in bone morphogenetic protein type II receptor cause dysregulation of Id gene expression in pulmonary artery smooth muscle cells: implications for familial pulmonary arterial hypertension. Circ Res 102, 1212-21. Yang, S. R., Kim, S. J., Byun, K. H., Hutchinson, B., Lee, B. H., Michikawa, M., Lee, Y. S. and Kang, K. S. (2006). NPC1 gene deficiency leads to lack of neural stem cell self-renewal and abnormal differentiation through activation of p38 mitogen-activated protein kinase signaling. Stem Cells 24, 292-8. Yao, Y., Li, W., Wu, J., Germann, U. A., Su, M. S., Kuida, K. and Boucher, D. M. (2003). Extracellular signal-regulated kinase 2 is necessary for mesoderm differentiation. Proc Natl Acad Sci U S A 100, 12759-64. Zawel, L., Dai, J. L., Buckhaults, P., Zhou, S., Kinzler, K. W., Vogelstein, B. and Kern, S. E. (1998). Human Smad3 and Smad4 are sequence-specific transcription activators. Mol Cell 1, 611-7. Zhang, S. C., Wernig, M., Duncan, I. D., Brustle, O. and Thomson, J. A. (2001). In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat Biotechnol 19, 1129-33. Zhu, H., Kavsak, P., Abdollah, S., Wrana, J. L. and Thomsen, G. H. (1999). A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation. Nature 400, 687-93.
神經發育是一個複雜的過程,在神經分化的機制與神經幹細胞自我更新維持的機制目前仍然不是非常的清楚。對於未決定分化方向的外胚層細胞(uncommitted ectoderm)走向神經的分化來說,纖維母細胞生長因子(Fibroblast growth factor, FGF)是一個必須存在的生長因子。藉由使用無血清的神經分化方式我們證實隨著FGF1濃度的增加可以促進並且誘導小鼠胚幹細胞分化同時具有Sox1/N-cadherin/nestin表現的細胞,證實這一群細胞為原始的神經母細胞(primitive neuroblasts)。而FGF促進神經分化的能力並不是透過增加Sox1+細胞的增生或是減少細胞的凋亡所引起的。另外也發現,抑制MAP kinase中的JNK1(c-Jun N-terminal kinase-1)或是ERK (extracellular signal-related kinases)而非p38路徑會抑制神經的分化,其抑制神經分化的機制是透過抑制胚幹細胞的分化,而不是讓胚幹細胞分化為中內胚層的細胞。此外,我們的實驗中也證實了FGF無法回復BMP或是Wnt抑制神經分化的作用,但是可以干擾在含有BMP和Wnt的情況下分化細胞中內生性IdⅠ以及Tcf的訊息。由這些證據顯示FGF所調節ES cells分化為神經主要是透過調控MPAK路徑的活化和部分抑制BMP和Wnt的訊息。在維持神經幹細胞的自我更新的部分,我們藉由加入puromycin篩選及在培養基中添加入EGF和FGF的方式之下,可以得到長期具有Sox1-GFP表現的細胞(LS cells),這些細胞具有神經幹細胞的標誌且可以分化為其他種類的神經細胞,但是這些細胞打入裸鼠體內時會形成畸胎瘤。而LS cells可以再程式化回復至全能性(pluripotent)的狀態,而這些細胞會表現全能性幹細胞的標誌之外也同時表現分化細胞的標誌。在Oct4和Nanog啟動子區域甲基化的狀態則是呈現低甲基化,這個情況與46C ES cells相似。以上的結果顯示,LS和LSP cells與EpiSCs是較為相似的細胞。因此若是未來想要使用胚幹細胞衍生的細胞於臨床治療上,應當更加注意、監測並且避免腫瘤的形成。

Neurogenesis is a complex process. The mechanism of neural differentiation and
the way to maintain the self-renewal of neural stem cells (NSCs) are still not very
clear. Fibroblast growth factor (FGF) is essential for uncommitted ectoderm to acquire
a neural fate and the self-renewal of NSCs. By using serum-free neural induction
method, we demonstrated that FGF1 dose-dependently promoted the induction of
Sox1/N-cadherin/nestin triple positive cells, which represent primitive neuroblasts,
from mouse embryonic stem (ES) cells. FGF-enhanced neurogenesis is not mediated
through the rescue of the apoptosis or the enhancement of the proliferation of Sox1+
cells. We further showed that the inactivation of c-Jun N-terminal kinases (JNKs) and
extracellular signal-related kinases (ERKs), but not p38 mitogen-activated protein
kinase (MAPK), inhibited the neural formation through the inhibition of ES
differentiation, but not through the formation of endomesodermal cells. We also
demonstrated that FGF cannot rescue the inhibition effect of BMP and Wnt in neural
induction, but can interfere with the endogenous BMP/IdⅠ or Wnt/Tcf signaling in
differentiating cells. The evidence indicated that FGF-mediated neural induction of
ES cells was through MAPK activation and partially through BMP and Wnt signaling
inhibition. The part of maintenance for NSCs self-renewal, by using puromycin
selection and supplement FGF and EGF in the culture medium, we obtained the
long-term Sox1-GFP+ expression cells (LS cells). These cells expressed neural stem
cell markers and had the capacity to differentiate into neural lineages, but they formed
teratoma in nude mice. LS cells could reprogram to pluripotent state (LSP cells) and
expressed pluripotent and differentiation makers. The Oct4 and Nanog promoter DNA
methylation in LS and LSP cells exhibited hypomethylation, which was similar to that
of 46C ES cells. All of these data showed that LS and LSP cells may be EpiSC-like
cells. Therefore, if we want to use the ES-derivatives for clinical purposes in the
future, we should heed, monitor and try to avoid the possible formation of tumors.
其他識別: U0005-0602201116505800
Appears in Collections:生命科學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.