Please use this identifier to cite or link to this item:
標題: 人類胚胎幹細胞與胰蛋白酶篩選之人類胚胎幹細胞亞群間基因表現差異
Differential Expression Between The Human Embryonic Stem Cell And Trypsin-selected Human Embryonic Stem Cell Subpopulation
作者: 丁筱茜
Ting, Hsiao-Chien
關鍵字: Human Embyronic Stem Cells;人類胚胎幹細胞
出版社: 生命科學系所
引用: Amano, M., Ito, M., Kimura, K., Fukata, Y., Chihara, K., Nakano, T., Matsuura, Y. and Kaibuchi, K. (1996). Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J Biol Chem 271, 20246-9. Amit, M., Carpenter, M. K., Inokuma, M. S., Chiu, C. P., Harris, C. P., Waknitz, M. A., Itskovitz-Eldor, J. and Thomson, J. A. (2000). Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev Biol 227, 271-8. Amit, M., Margulets, V., Segev, H., Shariki, K., Laevsky, I., Coleman, R. and Itskovitz-Eldor, J. (2003). Human feeder layers for human embryonic stem cells. Biol Reprod 68, 2150-6. Amit, M., Shariki, C., Margulets, V. and Itskovitz-Eldor, J. (2004). Feeder layer- and serum-free culture of human embryonic stem cells. Biol Reprod 70, 837-45. Bauwens, C. L., Peerani, R., Niebruegge, S., Woodhouse, K. A., Kumacheva, E., Husain, M. and Zandstra, P. W. (2008). Control of human embryonic stem cell colony and aggregate size heterogeneity influences differentiation trajectories. Stem Cells 26, 2300-10. Bennett, V., Gardner, K. and Steiner, J. P. (1988). Brain adducin: a protein kinase C substrate that may mediate site-directed assembly at the spectrin-actin junction. J Biol Chem 263, 5860-9. Burridge, P. W., Anderson, D., Priddle, H., Barbadillo Munoz, M. D., Chamberlain, S., Allegrucci, C., Young, L. E. and Denning, C. (2007). Improved human embryonic stem cell embryoid body homogeneity and cardiomyocyte differentiation from a novel V-96 plate aggregation system highlights interline variability. Stem Cells 25, 929-38. Chambers, S. M., Fasano, C. A., Papapetrou, E. P., Tomishima, M., Sadelain, M. and Studer, L. (2009). Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 27, 275-80. Chan, A. Y., Bailly, M., Zebda, N., Segall, J. E. and Condeelis, J. S. (2000). Role of cofilin in epidermal growth factor-stimulated actin polymerization and lamellipod protrusion. J Cell Biol 148, 531-42. Coleman, M. L., Sahai, E. A., Yeo, M., Bosch, M., Dewar, A. and Olson, M. F. (2001). Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I. Nat Cell Biol 3, 339-45. Cook, T. A., Nagasaki, T. and Gundersen, G. G. (1998). Rho guanosine triphosphatase mediates the selective stabilization of microtubules induced by lysophosphatidic acid. J Cell Biol 141, 175-85. Daub, H., Gevaert, K., Vandekerckhove, J., Sobel, A. and Hall, A. (2001). Rac/Cdc42 and p65PAK regulate the microtubule-destabilizing protein stathmin through phosphorylation at serine 16. J Biol Chem 276, 1677-80. Egorov, M. V., Capestrano, M., Vorontsova, O. A., Di Pentima, A., Egorova, A. V., Mariggio, S., Ayala, M. I., Tete, S., Gorski, J. L., Luini, A. et al. (2009). Faciogenital dysplasia protein (FGD1) regulates export of cargo proteins from the golgi complex via Cdc42 activation. Mol Biol Cell 20, 2413-27. Evans, M. J. and Kaufman, M. H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154-156. Frisch, S. M. and Screaton, R. A. (2001). Anoikis mechanisms. Curr Opin Cell Biol 13, 555-62. Genbacev, O., Krtolica, A., Zdravkovic, T., Brunette, E., Powell, S., Nath, A., Caceres, E., McMaster, M., McDonagh, S., Li, Y. et al. (2005). Serum-free derivation of human embryonic stem cell lines on human placental fibroblast feeders. Fertil Steril 83, 1517-29. Giancotti, F. G. (2000). Complexity and specificity of integrin signalling. Nat Cell Biol 2, E13-4. Gilmore, A. P. (2005). Anoikis. Cell Death Differ 12 Suppl 2, 1473-7. Hasegawa, K., Fujioka, T., Nakamura, Y., Nakatsuji, N. and Suemori, H. (2006). A method for the selection of human embryonic stem cell sublines with high replating efficiency after single-cell dissociation. Stem Cells 24, 2649-60. Hughes, C. A. and Bennett, V. (1995). Adducin: a physical model with implications for function in assembly of spectrin-actin complexes. J Biol Chem 270, 18990-6. Itskovitz-Eldor, J., Schuldiner, M., Karsenti, D., Eden, A., Yanuka, O., Amit, M., Soreq, H. and Benvenisty, N. (2000). Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol Med 6, 88-95. Keller, G. M. (1995). In vitro differentiation of embryonic stem cells. Curr Opin Cell Biol 7, 862-9. Kirschner, M. and Mitchison, T. (1986). Beyond self-assembly: from microtubules to morphogenesis. Cell 45, 329-42. Krawetz, R. J., Li, X. and Rancourt, D. E. (2009). Human embryonic stem cells: caught between a ROCK inhibitor and a hard place. Bioessays 31, 336-43. Kuhlman, P. A., Hughes, C. A., Bennett, V. and Fowler, V. M. (1996). A new function for adducin. Calcium/calmodulin-regulated capping of the barbed ends of actin filaments. J Biol Chem 271, 7986-91. Lee, J. B., Lee, J. E., Park, J. H., Kim, S. J., Kim, M. K., Roh, S. I. and Yoon, H. S. (2005). Establishment and maintenance of human embryonic stem cell lines on human feeder cells derived from uterine endometrium under serum-free condition. Biol Reprod 72, 42-9. Lee, J. B., Song, J. M., Lee, J. E., Park, J. H., Kim, S. J., Kang, S. M., Kwon, J. N., Kim, M. K., Roh, S. I. and Yoon, H. S. (2004). Available human feeder cells for the maintenance of human embryonic stem cells. Reproduction 128, 727-35. Li, X., Matsuoka, Y. and Bennett, V. (1998). Adducin preferentially recruits spectrin to the fast growing ends of actin filaments in a complex requiring the MARCKS-related domain and a newly defined oligomerization domain. J Biol Chem 273, 19329-38. Li, Y., Powell, S., Brunette, E., Lebkowski, J. and Mandalam, R. (2005). Expansion of human embryonic stem cells in defined serum-free medium devoid of animal-derived products. Biotechnol Bioeng 91, 688-98. Lutz, S., Freichel-Blomquist, A., Rumenapp, U., Schmidt, M., Jakobs, K. H. and Wieland, T. (2004). p63RhoGEF and GEFT are Rho-specific guanine nucleotide exchange factors encoded by the same gene. Naunyn Schmiedebergs Arch Pharmacol 369, 540-6. Lutz, S., Freichel-Blomquist, A., Yang, Y., Rumenapp, U., Jakobs, K. H., Schmidt, M. and Wieland, T. (2005). The guanine nucleotide exchange factor p63RhoGEF, a specific link between Gq/11-coupled receptor signaling and RhoA. J Biol Chem 280, 11134-9. Martin, G. R. (1981). Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proceedings of the National Academy of Sciences of the United States of America 78, 7634-7638. Mische, S. M., Mooseker, M. S. and Morrow, J. S. (1987). Erythrocyte adducin: a calmodulin-regulated actin-bundling protein that stimulates spectrin-actin binding. J Cell Biol 105, 2837-45. Nakanishi, H. and Takai, Y. (2008). Frabin and other related Cdc42-specific guanine nucleotide exchange factors couple the actin cytoskeleton with the plasma membrane. J Cell Mol Med 12, 1169-76. Nobes, C. D. and Hall, A. (1995a). Rho, rac and cdc42 GTPases: regulators of actin structures, cell adhesion and motility. Biochem Soc Trans 23, 456-9. Nobes, C. D. and Hall, A. (1995b). Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81, 53-62. Palazzo, A. F., Cook, T. A., Alberts, A. S. and Gundersen, G. G. (2001). mDia mediates Rho-regulated formation and orientation of stable microtubules. Nat Cell Biol 3, 723-9. Peerani, R., Rao, B. M., Bauwens, C., Yin, T., Wood, G. A., Nagy, A., Kumacheva, E. and Zandstra, P. W. (2007). Niche-mediated control of human embryonic stem cell self-renewal and differentiation. EMBO J 26, 4744-55. Pera, M. F. (2004). Unnatural selection of cultured human ES cells? Nat Biotechnol 22, 42-3. Puthalakath, H., Huang, D. C., O''Reilly, L. A., King, S. M. and Strasser, A. (1999). The proapoptotic activity of the Bcl-2 family member Bim is regulated by interaction with the dynein motor complex. Mol Cell 3, 287-96. Raftopoulou, M. and Hall, A. (2004). Cell migration: Rho GTPases lead the way. Dev Biol 265, 23-32. Reubinoff, B. E., Pera, M. F., Fong, C. Y., Trounson, A. and Bongso, A. (2000). Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol 18, 399-404. Ridley, A. J. (1999). Rho family proteins and regulation of the actin cytoskeleton. Prog Mol Subcell Biol 22, 1-22. Ridley, A. J. (2006). Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. Trends Cell Biol 16, 522-9. Ridley, A. J., Schwartz, M. A., Burridge, K., Firtel, R. A., Ginsberg, M. H., Borisy, G., Parsons, J. T. and Horwitz, A. R. (2003). Cell migration: integrating signals from front to back. Science 302, 1704-9. Riento, K. and Ridley, A. J. (2003). Rocks: multifunctional kinases in cell behaviour. Nat Rev Mol Cell Biol 4, 446-56. Rodriguez, O. C., Schaefer, A. W., Mandato, C. A., Forscher, P., Bement, W. M. and Waterman-Storer, C. M. (2003). Conserved microtubule-actin interactions in cell movement and morphogenesis. Nat Cell Biol 5, 599-609. Schuyler, S. C. and Pellman, D. (2001). Search, capture and signal: games microtubules and centrosomes play. J Cell Sci 114, 247-55. Sebbagh, M., Renvoize, C., Hamelin, J., Riche, N., Bertoglio, J. and Breard, J. (2001). Caspase-3-mediated cleavage of ROCK I induces MLC phosphorylation and apoptotic membrane blebbing. Nat Cell Biol 3, 346-52. Small, J. V. and Kaverina, I. (2003). Microtubules meet substrate adhesions to arrange cell polarity. Curr Opin Cell Biol 15, 40-7. Souchet, M., Portales-Casamar, E., Mazurais, D., Schmidt, S., Leger, I., Javre, J. L., Robert, P., Berrebi-Bertrand, I., Bril, A., Gout, B. et al. (2002). Human p63RhoGEF, a novel RhoA-specific guanine nucleotide exchange factor, is localized in cardiac sarcomere. J Cell Sci 115, 629-40. Stam, J. C. and Collard, J. G. (1999). The DH protein family, exchange factors for Rho-like GTPases. Prog Mol Subcell Biol 22, 51-83. Stojkovic, P., Lako, M., Stewart, R., Przyborski, S., Armstrong, L., Evans, J., Murdoch, A., Strachan, T. and Stojkovic, M. (2005). An autogeneic feeder cell system that efficiently supports growth of undifferentiated human embryonic stem cells. Stem Cells 23, 306-14. Takenawa, T. and Suetsugu, S. (2007). The WASP-WAVE protein network: connecting the membrane to the cytoskeleton. Nat Rev Mol Cell Biol 8, 37-48. Takesono, A., Heasman, S. J., Wojciak-Stothard, B., Garg, R. and Ridley, A. J. Microtubules regulate migratory polarity through Rho/ROCK signaling in T cells. PLoS One 5, e8774. Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S. and Jones, J. M. (1998). Embryonic stem cell lines derived from human blastocysts. Science 282, 1145-7. Thomson, J. A., Kalishman, J., Golos, T. G., Durning, M., Harris, C. P., Becker, R. A. and Hearn, J. P. (1995). Isolation of a primate embryonic stem cell line. Proceedings of the National Academy of Sciences of the United States of America 92, 7844-7848. Thomson, J. A. and Marshall, V. S. (1998). Primate embryonic stem cells. Curr Top Dev Biol 38, 133-65. Totsukawa, G., Yamakita, Y., Yamashiro, S., Hartshorne, D. J., Sasaki, Y. and Matsumura, F. (2000). Distinct roles of ROCK (Rho-kinase) and MLCK in spatial regulation of MLC phosphorylation for assembly of stress fibers and focal adhesions in 3T3 fibroblasts. J Cell Biol 150, 797-806. Urbach, A., Schuldiner, M. and Benvenisty, N. (2004). Modeling for Lesch-Nyhan disease by gene targeting in human embryonic stem cells. Stem Cells 22, 635-41. Valentijn, A. J., Zouq, N. and Gilmore, A. P. (2004). Anoikis. Biochem Soc Trans 32, 421-5. Wang, Q., Fang, Z. F., Jin, F., Lu, Y., Gai, H. and Sheng, H. Z. (2005). Derivation and growing human embryonic stem cells on feeders derived from themselves. Stem Cells 23, 1221-7. Wang, W., Eddy, R. and Condeelis, J. (2007). The cofilin pathway in breast cancer invasion and metastasis. Nat Rev Cancer 7, 429-40. Watanabe, K., Ueno, M., Kamiya, D., Nishiyama, A., Matsumura, M., Wataya, T., Takahashi, J. B., Nishikawa, S., Muguruma, K. and Sasai, Y. (2007). A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol 25, 681-6. Watanabe, T., Noritake, J. and Kaibuchi, K. (2005). Regulation of microtubules in cell migration. Trends Cell Biol 15, 76-83. Waterman-Storer, C. M. and Salmon, E. D. (1997). Actomyosin-based retrograde flow of microtubules in the lamella of migrating epithelial cells influences microtubule dynamic instability and turnover and is associated with microtubule breakage and treadmilling. J Cell Biol 139, 417-34. Westermann, S. and Weber, K. (2003). Post-translational modifications regulate microtubule function. Nat Rev Mol Cell Biol 4, 938-47. Wittmann, T., Bokoch, G. M. and Waterman-Storer, C. M. (2003). Regulation of leading edge microtubule and actin dynamics downstream of Rac1. J Cell Biol 161, 845-51. Wittmann, T., Bokoch, G. M. and Waterman-Storer, C. M. (2004). Regulation of microtubule destabilizing activity of Op18/stathmin downstream of Rac1. J Biol Chem 279, 6196-203. Xu, C., Inokuma, M. S., Denham, J., Golds, K., Kundu, P., Gold, J. D. and Carpenter, M. K. (2001). Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotechnol 19, 971-4. Xu, C., Jiang, J., Sottile, V., McWhir, J., Lebkowski, J. and Carpenter, M. K. (2004). Immortalized fibroblast-like cells derived from human embryonic stem cells support undifferentiated cell growth. Stem Cells 22, 972-80. Yoo, S. J., Yoon, B. S., Kim, J. M., Song, J. M., Roh, S., You, S. and Yoon, H. S. (2005). Efficient culture system for human embryonic stem cells using autologous human embryonic stem cell-derived feeder cells. Exp Mol Med 37, 399-407. Zheng, Y., Fischer, D. J., Santos, M. F., Tigyi, G., Pasteris, N. G., Gorski, J. L. and Xu, Y. (1996). The faciogenital dysplasia gene product FGD1 functions as a Cdc42Hs-specific guanine-nucleotide exchange factor. J Biol Chem 271, 33169-72. Zou, J., Maeder, M. L., Mali, P., Pruett-Miller, S. M., Thibodeau-Beganny, S., Chou, B. K., Chen, G., Ye, Z., Park, I. H., Daley, G. Q. et al. (2009). Gene targeting of a disease-related gene in human induced pluripotent stem and embryonic stem cells. Cell Stem Cell 5, 97-110. Zwaka, T. P. and Thomson, J. A. (2003). Homologous recombination in human embryonic stem cells. Nat Biotechnol 21, 319-21.
人類胚胎幹細胞(human embryonic stem cells, HES cells)的單細胞繼代存活率很低,目前繼代人類胚胎幹細胞皆以細胞團塊的方式繼代以避免單細胞分離的情形。由於同質的(homogenous)和單細胞的人類胚胎幹細胞的產生相當困難,因此降低了人類胚胎幹細胞的轉染、clonal isolation與分化的效率。前人研究指出Y-27632可促進單細胞分離之人類胚胎幹細胞存活,但是其機制仍然不明。為了確定控制人類胚胎幹細胞的單細胞存活機制,本實驗室以單細胞繼代方式建立一株單細胞存活率較高的trypsin-resistant人類胚胎幹細胞亞群(sublines),期望找到trypsin-resistant人類胚胎幹細胞單細胞存活率較高的原因。為了了解trypsin-resistant與正常人類胚胎幹細胞的差異,本研究以上述兩種人類胚胎幹細胞為材料進行基因表現差異的分析。實驗結果發現細胞骨架材料(beta-actin、alpha-tubulin與beta-tubulin)與幫助細胞骨架生成的相關基因(ADD2、PAK3與FGD1)在trypsin-resistant人類胚胎幹細胞裡都有表現量提升的情形。因此假設由Rho/Rac/Cdc42訊息傳遞路徑活化肌動蛋白(actin-filament)與微管(microtubule)的穩定與增生可以幫助trypsin-resistant人類胚胎幹細胞抵抗單細胞分離逆境而存活。研究中也發現幫助肌動蛋白生成的表皮生長因子(epidermal growth factor, EGF)可以幫助單細胞的人類胚胎幹細胞存活。然而,細胞骨架的增生與穩定是否在人類胚胎幹細胞的單細胞存活扮演重要角色仍然需要驗證。未來會以微管控制劑(Taxol與nocodazol)驗證微管的穩定與人類胚胎幹細胞單細胞存活率的關係。本研究發現細胞骨架的穩定與增生可能增加人類胚胎幹細胞的單細胞存活率,期望可以解開人類胚胎幹細胞的單細胞存活機制。細胞骨架的穩定與強化在研究上或是醫學應用上或許是一種簡單、有效率且可以幫助產生同質的人類胚胎幹細胞株與提高人類胚胎幹細胞轉染效率的方法。

Human embryonic stem cell (HES cells) is highly sensitive to dissociation, which cause HES cells death. So far, the usual way to passage HES cells is using type IV collagenase or accutase to prevent dissociation of HES cells. Generation of homogenous and single HESC is an obstacle, preventing the efficient gene transfer and clonal isolation. Previous study demonstrates Y-27632 permit survival of dissociated HES cells, but the mechanism is still unclear. In order to find out the mechanism that regulate dissociated HES cells survival, trypsin-resistant HES sublines were obtained to find out what happended in trypsin-resistant HES sublines can let it survival from trypsin-dissociation. To explore the differences in trypsin-resistant HES cells and normal HES cells, the gene expression patterns of both HES cells are analyzed at protein- and RNA-level. We have found out that cytoskeleton materials (beta-actin, alpha-tubulin and beta-tubulin) and genes that promoting cytoskeleton formation (ADD2, PAK3 and FGD1) are up-regulate in trypsin-resistant HES cells. We postulate that the polymerization and stabilization of actin-filaments and microtubules by activation of Rho/Rac/Cdc42 pathway may help trypsin-resistant HES cells overcome dissociation and survive. Moreover, we also find that the epidermal growth factor (EGF) which induces actin-filament formation also increases the survival of dissociated HES cells. However, the relationship between cytoskeletons and HES cell survival still need to be confirmed. We will further treat HES cells with microtubule regulator (Taxol and nocodazol) to confirm the relationship between microtubule and HES cell survival. Since we have find that actin-filaments and microtubules may improve survival of trypsin dissociated HES cells, the survival mechanism of dissociated HES cells may be solve. With the enhancement of cytoskeleton, it may be a simple and more efficient process to generate homogenous population of HES cells and improve gene transfer efficiency of HES cells in medical research and applications.
其他識別: U0005-2107201014565300
Appears in Collections:生命科學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.