Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/23135
標題: 阿拉伯芥AtRTNLB1至AtRTNLB7基因家族於土壤農桿菌感染植物過程之功能分析
Functional studies of the AtRTNLB1~ AtRTNLB7 genes in the Agrobacterium-mediated plant transformation process
作者: 傅碧汝
Fu, Bi-Ju
關鍵字: arabidopsis;阿拉伯芥;agrobacterium;RTNLB;農桿菌;RTNLB
出版社: 生命科學系所
引用: 1. 張, 耀仁. (2008). 阿拉伯芥RTNLB2與RTNLB4蛋白質於土壤農桿菌感染植物過程之功能分析。國立中興大學生命科學所 碩士論文 2. 盧, 毓. (2010). 阿拉伯芥AtRab8蛋白質家族於土壤農桿菌感染植物過程之功能分析。國立中興大學生命科學所 碩士論文 3. Fletcher, M. (1996). Bacterial attachment in aquatic environments: a diversity of surfaces and adhesion strategies. In M Fletcher, ed, Bacterial Adhesion: Molecular and Ecological Diversity. Wiley-Liss, New York, pp 1-24. 4. Xia, X., and Lemey, P., (2009). The Phylogenetic Handbook. In: P. Lemey, ed. Assessing substitution saturation with DAMBE. Cambridge, United Kingdom, pp 611-626. 5. Abuodeh, R.O., Orbach, M.J., Mandel, M.A., Das, A., and Galgiani, J.N. (2000). Genetic transformation of Coccidioides immitis facilitated by Agrobacterium tumefaciens. J Infect Dis 181, 2106–2110. 6. Akiyoshi, D.E., Klee, H., Amasino, R.M., Nester, E.W., and Gordon, M.P. (1984). T-DNA of Agrobacterium tumefaciens encodes an enzyme of cytokinin biosynthesis. Proc Natl Acad Sci USA 81, 5994-5998. 7. Allan, V.J. (1998). Organelle motility and membrane network formation in metaphase and interphase cell-free extracts. Methods Enzymol 298, 339–353. 8. Alonso J.M., Stepanova A.N., Leisse T.J., Kim C.J., Chen H., Shinn P., Stevenson D.K., Zimmerman J., Barajas P., Cheuk R., Gadrinab C., Heller C., Jeske A., Koesema E., Meyers C.C., Parker H., Prednis L., Ansari Y., Choy N., Deen H., Geralt M., Hazari N., Hom E., Karnes M., Mulholland C., Ndubaku R., Schmidt I., Guzman P., Aguilar-Henonin L., Schmid M., Weigel D., Carter D.E., Marchand T., Risseeuw E., Brogden D., Zeko A., Crosby W.L., Berry C.C., and Ecker J.R. (2003). Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301, 653-657. 9. Aly, K.A., and Baron, C. (2007). The VirB5 protein localizes to the T-pilus tips in Agrobacterium tumefaciens. Microbiology 153, 3766-3775. 10. Aly, K.A, Krall, L., Lottspeich, F., and Baron, C. (2008). The type IV secretion system component VirB5 binds to the trans-zeatin biosynthetic enzyme Tzs and enables its translocation to the cell surface of Agrobacterium tumefaciens. J Bacteriol 190, 1595-1604. 11. Anand, A., Krichevsky, A., Schornack, S., Lahaye, T., Tzfira, T., Tang, Y., Citovsky, V., and Mysore, K.S. (2007). Arabidopsis VIRE2 INTERACTING PROTEIN2 is required for Agrobacterium T-DNA integration in plants. Plant Cell 19, 1695-1708. 12. Ashby, A.M., Watson, M.D., Loake, G.J., and Shaw, C.H. (1988). Ti plasmid-specified chemotaxis of Agrobacterium tumefaciens C58C1 toward vir-inducing phenolic compounds and soluble factors from monocotyledonous and dicotyledonous plants. J Bacteriol 170, 4181-4187. 13. Atmakuri, K., Cascales, E., Burton, O.T., Banta, L.M., and Christie, P.J. (2007). Agrobacterium ParA/MinD-like VirC1 spatially coordinates early conjugative DNA transfer reactions. EMBO J 26, 2540-2551. 14. Atmakuri, K., Cascales, E., and Christie, P.J. (2004). Energetic components VirD4, VirB11 and VirB4 mediate early DNA transfer reactions required for bacterial type IV secretion. Mol Microbiol 54, 1199–1211. 15. Atmakuri, K., Ding, Z., and Christie, P.J. (2003). VirE2, a type IV secretion substrate, interacts with the VirD4 transfer protein at cell poles of Agrobacterium tumefaciens. Mol Microbiol 49, 1699-1713. 16. Backert, S., Fronzes, R., and Waksman, G. (2008). VirB2 and VirB5 proteins: specialized adhesins in bacterial type-IV secretion systems? Trends Microbiol 16, 409-413. 17. Bailey, S., Ward, D., Middleton, R., Grossmann, J.G., and Zambryski, P.C. (2006). Agrobacterium tumefaciens VirB8 structure reveals potential protein-protein interaction sites. Proc Natl Acad Sci USA 103, 2582-2587. 18. Bako, L., Umeda, M., Tiburcio, A.F., Schell, J., and Koncz, C. (2003). The VirD2 pilot protein of Agrobacterium-transferred DNA interacts with the TATA box-binding protein and a nuclear protein kinase in plants. Proc Natl Acad Sci USA 100, 10108-10113. 19. Ballas, N., and Citovsky, V. (1997). Nuclear localization signal binding protein from Arabidopsis mediates nuclear import of Agrobacterium VirD2 protein. Proc Natl Acad Sci USA 94, 10723-10728. 20. Baron, C. (2006). VirB8: a conserved type IV secretion system assembly factor and drug target. Biochem Cell Biol 84, 890-899. 21. Baron, C., Llosa, M., Zhou, S., and Zambryski, P.C. (1997). VirB1, a component of the T-complex transfer machinery of Agrobacterium tumefaciens, is processed to a C-terminal secreted product, VirB1. J Bacteriol 179, 1203-1210. 22. Bayliss, R., Harris, R., Coutte, L., Monier, A., Fronzes, R., Christie, P.J., Driscoll, P.C., and Waksman, G. (2007). NMR structure of a complex between the VirB9/VirB7 interaction domains of the pKM101 type IV secretion system. Proc. Natl Acad. Sci. USA 104, 1673–1678. 23. Beaupre, C.E., Bohne, J., Dale, E.M., and Binns, A.N. (1997). Interactions between VirB9 and VirB10 membrane proteins involved in movement of DNA from Agrobacterium tumefaciens into plant cells. J Bacteriol 179, 78-89. 24. Bhattacharjee, S., Lee, L.Y., Oltmanns, H., Cao, H., Veena, Cuperus, J., and Gelvin, S.B. (2008). IMPa-4, an Arabidopsis importin alpha isoform, is preferentially involved in Agrobacterium-mediated plant transformation. Plant Cell 20, 2661-2680. 25. Bouzar, H., and Jones, J.B. (2001). Agrobacterium larrymoorei sp. nov., a pathogen isolated from aerial tumours of Ficus benjamina. Int J Syst Evol Microbiol 51, 1023-1026. 26. Brencic, A., Angert, E. R., and Winans, S.C. (2005). Unwounded plants elicit Agrobacterium vir gene induction and T-DNA transfer: transformed plant cells produce opines yet are tumour free. Mol Microbiol 57, 1522-1531. 27. Brencic, A., and Winans, S.C. (2005). Detection of and response to signals involved in host-microbe interactions by plant-associated bacteria. Microbiol Mol Biol Rev 69, 155-194. 28. Buhrdorf, R., Forster, C., Haas, R., and Fischer, W. (2003). Topological analysis of a putative virB8 homologue essential for the cag type IV secretion system in Helicobacter pylori. Int. J. Med. Microbiol. 293, 213–217. 29. Bulgakov, V.P., Kisselev, K.V., Yakovlev, K.V., Zhuravlev, Y.N., Gontcharov, A.A., and Odintsova, N.A. (2006). Agrobacterium-mediated transformation of sea urchin embryos. Biotechnol J 1, 454–461. 30. Cangelosi, G.A., Martinetti, G., Leigh, J.A., Lee, C C., Theines, C., and Nester, E.W. (1989). Role for Agrobacterium tumefaciens ChvA protein in export of beta-1,2-glucan. J Bacteriol 171, 1609-1615. 31. Cangelosi, G.A., Martinetti, G., and Nester, E.W. (1990) Osmosensitivity phenotypes of Agrobacterium tumefaciens mutants that lack periplasmic beta-1,2-glucan. J Bacteriol 172, 2172-2174. 32. Caplan, A., Herrera-Estrella, L., Inzé, D., Van, H.E., Van, M.M., Schell, J., Zambryski, P. (1983). Introduction of genetic material into plant cells. Science 222, 815-821. 33. Caplan, A.B., Van Montagu, M., and Schell, J. (1985). Genetic analysis of integration mediated by single T-DNA borders. J Bacteriol 161, 655-664. 34. Carr, A. M. (2003). Molecular biology. Beginning at the end. Science 300, 1512-1513. 35. Cascales, E., Atmakuri, K., Liu, Z., Binns, A.N., and Christie, P.J. (2005). Agrobacterium tumefaciens oncogenic suppressors inhibit T-DNA and VirE2 protein substrate binding to the VirD4 coupling protein. Mol Microbiol 58, 565-579. 36. Cascales, E., and Christie, P.J. (2004a). Definition of a bacterial type IV secretion pathway for a DNA substrate. Science 304, 1170–1173. 37. Cascales, E., and Christie, P.J. (2004b). Agrobacterium VirB10, an ATP energy sensor required for type IV secretion. Proc. Natl Acad. Sci. USA 101, 17228–17233. 38. Cavara, F. (1897). Tubercolosi della vite. Intorno alla e ziologia de alcune malattie di piante coltivate. Stazoni Sperimentale Agrarie Italiane 30,483–487. 39. Chang, K., Seabold, G.K., Wang, C.Y., and Wenthold, R.J. (2010). Reticulon 3 is an interacting partner of the SALM family of adhesion molecules. J Neurosci Res 88, 266-274. 40. Charles, T.C., and Nester, E.W. (1993). A chromosomally encoded two-component sensory transduction system is required for virulence of Agrobacterium tumefaciens. J Bacteriol 175, 6614–6625. 41. Chen, Y., Zhao, S., and Xiang, R. (2010). RTN3 and RTN4: Candidate modulators in vascular cell apoptosis and atherosclerosis. J Cell Biochem In press. 42. Chilton, M.D., Drummond, M.H., Merio, D.J., Sciaky, D., Montoya, A.L., Gordon, M.P., and Nester, E.W. (1977). Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis. Cell 11, 263-271. 43. Cho, H., and Winans, S.C. (2005). VirA and VirG activate the Ti plasmid repABC operon, elevating plasmid copy number in response to wound-released chemical signals. Proc Natl Acad Sci USA 102, 14843-14848. 44. Christie, P.J., Atmakuri, K., Krishnamoorthy, V., Jakubowski, S., and Cascales, E. (2005). Biogenesis, architecture, and function of bacterial type IV secretion systems. Annu Rev Microbiol 59, 451-485. 45. Christie, P.J., Ward, J.E., Winans, S.C., and Nester, E.W. (1988). The Agrobacterium tumefaciens virE2 gene product is a single-stranded-DNA-binding protein that associates with T-DNA. J Bacteriol 170, 2659-2667. 46. Christie, P.J., Ward, J.E., Jr., Gordon, M.P., and Nester, E.W. (1989). A gene required for transfer of T-DNA to plants encodes an ATPase with autophosphorylating activity. Proc Natl Acad Sci USA 86, 9677-9681. 47. Citovsky, V., Guralnick, B., Simon, M.N., and Wall, J.S. (1997). The molecular structure of Agrobacterium VirE2-single stranded DNA complexes involved in nuclear import. J Mol Biol 271, 718-727. 48. Citovsky, V., Kapelnikov, A., Oliel, S., Zakai, N., Rojas, M.R., Gilbertson, R.L., Tzfira, T., and Loyter, A. (2004). Protein interactions involved in nuclear import of the Agrobacterium VirE2 protein in vivo and in vitro. J Biol Chem 279, 29528-29533. 49. Citovsky, V., Kozlovsky, S.V., Lacroix, B., Zaltsman, A., Dafny-Yelin, M., Vyas, S., Tovkach, A., and Tzfira, T. (2007). Biological systems of the host cell involved in Agrobacterium infection. Cell Microbiol 9, 9-20. 50. Citovsky, V., Wong, M.L., and Zambryski, P.C. (1989). Cooperative interaction of Agrobacterium VirE2 protein with single-stranded DNA: implications for the T-DNA transfer process. Proc Natl Acad Sci USA 86, 1193-1197. 51. Citovsky, V., Zupan, J., Warnick, D., and Zambryski, P.C. (1992). Nuclear localization of Agrobacterium VirE2 protein in plant cells. Science 256, 1802-1805. 52. Cornelis, G.R., and Van Gijsegem, F. (2000). Assembly and function of type III secretory systems. Microbiol 54, 735–774. 53. Das, A., and Xie, Y.H. (2000). The Agrobacterium T-DNA transport pore proteins VirB8, VirB9, and VirB10 interact with one another. J Bacteriol 182, 758-763. 54. De Craene, J.O., Coleman, J., Estrada de Martin, P., Pypaert, M., Anderson, S., Yates, J.R.3rd, Ferro-Novick, S., and Novick, P. (2006). Rtn1p is involved in structuring the cortical endoplasmic reticulum. Mol Biol Cell 17, 3009-3020. 55. de Groot, M.J.A., Bundock, P., Hooykaas, P.J., and Beijers-bergen, A.G.M. (1998). Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol 16, 839–842. 56. De Vos, G., and Zambryski, P.C. (1989). Expression of Agrobacterium nopaline-specific VirD1, VirD2, and VirC1 proteins and their requirement for T-strand production in E. coli. Mol Plant Microbe Interact 2, 43-52. 57. DeCleene, M., and DeLey, J.. (1976). The host range of crown gall. Bot Rev 42, 389-466. 58. Di Sano, F., Fazi, B., Tufi, R., Nardacci, R., and Piacentini, M. (2007) Reticulon-1C acts as molecular switch between endoplasmic reticulum stress and genotoxic cell death pathway in human neuroblastoma cells. J Neurochem 102, 345–353. 59. Draper, O., Middleton, R., Doucleff, M., and Zambryski, P.C. (2006). Topology of the VirB4 C terminus in the Agrobacterium tumefaciens VirB/D4 type IV secretion system. J Biol Chem 281, 37628-37635. 60. Dumas, F., Duckely, M., Pelcza,r P., Van Gelder, P., and Hohn, B. (2001). An Agrobacterium VirE2 channel for transferred-DNA transport into plant cells. Proc Natl Acad Sci USA 98, 485-490. 61. Eisenbrandt, R., Kalkum, M., Lai, E.M., Lurz, R., Kado, C.I., and Lanka, E. (1999). Conjugative pili of IncP plasmids, and the Ti plasmid T pilus are composed of cyclic subunits. J Biol Chem 274, 22548-22555. 62. Fabre, E., and Dunal, F. (1853). Observations sur les maladies regantes de la vigne. Bull. Soc. Cent. Agric. Dep. Herault 40, 46. 63. Fournier, A.E., GrandPre, T., and Strittmatter, S.M. (2001). Identification of a receptor mediating Nogo-66 inhibition of axonal regeneration. Nature 409, 341-346. 64. Fronzes, R., Christie, P.J., and Waksman, G. (2009a). The structural biology of type IV secretion systems. Nat Rev Microbiol 7,703-714. 65. Fronzes, R., Schäfer, E., Wang, L., Saibil, H.R., Orlova, E.V., and Waksman, G. (2009b). Structure of a type IV secretion system core complex. Science 323, 266-268. 66. Garcia-Rodriguez, F.M., Schrammeijer, B., and Hooykaas, P.J. (2006). The Agrobacterium VirE3 effector protein: a potential plant transcriptional activator. Nucleic Acids Res 34, 6496-6504. 67. Gelvin, S.B. (2000). Agrobacterium and plant genes involved in T-DNA transfer and integration. Plant Mol Biol. 51, 223–256. 68. Gelvin, S.B. (2003). Agrobacterium-Mediated Plant Transformation: the Biology behind the “Gene-Jockeying” Tool. Microbiol Mol Biol Rev 67, 16–37. 69. Gelvin, S.B. (2010a). Plant proteins involved in Agrobacterium-mediated genetic transformation. Annu Rev Phytopathol 48, 45-68. 70. Gelvin, S.B. (2010b). Finding a way to the nucleus. Microbiology 13, 53–58. 71. Gheysen, G., Villarroel, R., and Van Montagu, M. (1991). Illegitimate recombination in plants: a model for T-DNA integration. Genes Dev 5, 287-297. 72. Goodner, B., Hinkle, G., Gattung, S., Miller, N., Blanchard, M., Qurollo, B.,Goldman,B.S., Cao, Y., Askenazi, M., Halling, C., Mullin, L., Houmiel, K., Gordon, J.,Vaudin, M., Iartchouk, O., Epp, A., Liu, F., Wollam, C., Allinger, M., Doughty, D., Scott, C., Lappas, C., Markelz, B., Flanagan, C., Crowell, C., Gurson, J., Lomo, C., Sear, C., Strub, G., Cielo, C., and Slater, S. (2001). Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58. Science 294, 2323-2328. 73. Grange, W., Duckely, M., Husale, S., Jacob, S., Engel, A., and Hegner, M. (2008) VirE2: a unique ssDNA-compacting molecular machine. PLoS Biol 6, 343-351. 74. Guo, M., Hou, Q., Hew, C.L., and Pan, S.Q. (2007a). Agrobacterium VirD2-binding protein is involved in tumorigenesis and redundantly encoded in conjugative transfer gene clusters. Mol Plant Microbe Interact 20, 1201-1212. 75. Guo, M., Jin, S., Sun, D., Hew, C.L., and Pan, S.Q. (2007b). Recruitment of conjugative DNA transfer substrate to Agrobacterium type IV secretion apparatus. Proc Natl Acad Sci USA 104, 20019-20024. 76. Hajdukiewicz, P., Svab, Z., and Maliga, P. (1994). The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol 125, 989-994. 77. Hall-Stoodley, L., Costerton, J.W., and Stoodley, P. (2004). Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2, 95-108. 78. He, W., Shi, Q., Hu, X., and Yan, R. (2007). The membrane topology of RTN3 and its effect on binding of RTN3 to BACE1. J Biol Chem 282, 29144–29151. 79. Heinlein, M., Padgett, H.S., Gens, J.S., Pickard, B.G., Casper, S.J., Epel, B.L. and Beachy, R.N. (1998). Changing patterns of localization of the tobacco mosaic virus movement protein and replicase to the endoplasmic reticulum and microtubules during infection. Plant Cell 10, 1107-1120. 80. Hiei, Y., Ohta, S., Komari, T., and Kumashiro, T. (1994). Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 16, 271-282. 81. Hu, J., Shibata, Y., Voss, C., Shemesh, T., Li, Z., Coughlin, M., Kozlov, M.M., Rapoport, T.A., and Prinz, W.A. (2008). Membrane proteins of the endoplasmic reticulum induce high-curvature tubules. Science 319, 1247–1250. 82. Hwang, H.H., and Gelvin, S.B. (2004). Plant proteins that interact with VirB2, the Agrobacterium tumefaciens pilin protein, mediate plant transformation. Plant Cell 16, 3148-3167. 83. Hwang, H.H., Wang, M.H., Lee, Y.L., Tsai, Y.L., Li, Y.H., Yang, F.J., Liao, Y.C., Lin, S.K., and Lai, E.M. (2010). Agrobacterium-produced and exogenous cytokinin-modulated Agrobacterium-mediated plant transformation. Mol Plant Pathol 11, 677-690. 84. Hynes, M.F., Simon, R., and Pühler, A. (1985). The development of plasmid-free strains of Agrobacterium tumefaciens by using incompatibility with a Rhizobium meliloti plasmid to eliminate pAtC58. Plasmid 13, 99-105. 85. Iwahashi, J., and Hamada, N. (2003). Human reticulon 1-A and 1-B interact with a medium chain of the AP-2 adaptor complex. Cell Mol Biol 49, 467–471. 86. Iwahashi, J., Kawasaki, I., Kohara, Y., Gengyo-Ando, K., Mitani, S., Ohshima, Y., Hamada, N., Hara, K., Kashiwagi, T., and Toyoda, T. (2002). Caenorhabditis elegans reticulon interacts with RME-1 during embryogenesis. Biochem Biophys Res Commun 293, 698-704. 87. Jakubowski, S.J., Cascales, E., Krishnamoorthy, V., and Christie, P. J. (2005). Agrobacterium tumefaciens VirB9, an outer-membrane-associated component of a type IV secretion system, regulates substrate selection and T-pilus biogenesis. J Bacteriol 187, 3486–3495. 88. Jakubowski, S.J., Kerr, J.E., Garza, I., Krishnamoorthy, V., Bayliss, R., Waksman, G., and Christie, P.J. (2009). Agrobacterium VirB10 domain requirements for type IV secretion and T pilus biogenesis. Mol Microbiol 71, 779–794. 89. Jakubowski, S.J., Krishnamoorthy, V., Cascales, E., and Christie, P.J. (2004). Agrobacterium tumefaciens VirB6 domains direct the ordered export of a DNA substrate through a type IV secretion system. J. Mol. Biol. 341, 961–977. 90. Jin, S., Roitsch, T., Ankenbauer, R.G., Gordon, M.P., and Nester, E.W. (1990). The VirA protein of Agrobacterium tumefaciens is autophosphorylated and is essential for vir gene regulation. J Bacteriol 172, 525-530. 91. Judd, P.K., Kumar, R.B., and Das, A. (2005a). Spatial location and requirements for the assembly of the Agrobacterium tumefaciens type IV secretion apparatus. Proc Natl Acad Sci USA 102, 11498-11503. 92. Judd, P. K., Kumar, R. B., and Das, A. (2005b). The type IV secretion apparatus protein VirB6 of Agrobacterium tumefaciens localizes to a cell pole. Mol. Microbiol. 55, 115–124. 93. Kemner, J.M., Liang, X. and Nester, E.W. (1997). The Agrobacterium tumefaciens virulence gene chvE is part of a putative ABC-type sugar transport operon. J. Bacteriol 179, 2452–2458. 94. Kelly, B.A., and Kado, C.I. (2002). Agrobacterium-mediated T-DNA transfer and integration into the chromosome of Streptomyces lividans. Mol Plant Pathol 3, 125–134. 95. Kerr, A., and Panagopoulos, C.G. (1977). Biotypes of Agrobacterium radiobacter var. tumefaciens and their biological control. Phytopath Z 90, 172-179. 96. Kerr, J.E., and Christie, P.J. (2010). Evidence for VirB4-mediated dislocation of membrane-integrated VirB2 pilin during biogenesis of the Agrobacterium VirB/VirD4 type IV secretion system. J Bacteriol 192, 4923-4934. 97. Klee, H., Montoya, A., Horodyski, F., Lichtenstein, C., Garfinkel, D., Fuller, S., Flores, C., Peschon, J., Nester, E., and Gordon, M. (1984). Nucleotide sequence of the tms genes of the pTiA6NC octopine Ti plasmid: two gene products involved in plant tumorigenesis. Proc Natl Acad Sci USA 81, 1728-1732. 98. Kools, P.F., Roebroek, A.J., Van de Velde, H.J., Marynen, P., Bullerdiek, J., and Van de Ven, W.J.. (1994). Regional mapping of the human NSP gene to chromosome region 14q21-->q22 by fluorescence in situ hybridization analysis. Cytogenet Cell Genet 66, 48-50. 99. Koraimann, G. (2003). Lytic transglycosylases in macromolecular transport systems of Gram-negative bacteria. Cell Mol Life Sci 60, 2371-2388. 100. Krause, S., Barcena , M., Pansegrau, W., Lurz, R., Carazo, J.M., and Lanka, E. (2000). Sequence-related protein export NTPases encoded by the conjugative transfer region of RP4 and by the cag pathogenicity island of Helicobacter pylori share similar hexameric ring structures. Proc. Natl Acad. Sci. USA 97, 3067–3072. 101. Kumar S., Nei M., Dudley J., and Tamura K. (2008). MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9, 299-306. 102. Kunik, T., Tzfira, T., Kapulnik, Y., Gafni, Y., Dingwall, C., and Citovsky, V. (2001). Genetic transformation of HeLa cells by Agrobacterium. Proc Natl Acad Sci USA 98, 1871–1876. 103. Lacroix, B., and Citovsky, V. (2009). Agrobacterium aiming for the host chromatin: Host and bacterial proteins involved in interactions between T-DNA and plant nucleosomes. Commun Integr Biol 2, 42-45. 104. Lacroix, B., Loyter, A., and Citovsky, V. (2008). Association of the Agrobacterium T-DNA-protein complex with plant nucleosomes. Proc Natl Acad Sci USA 105, 15429-15434. 105. Lacroix, B., Vaidya, M., Tzfira, T., and Citovsky, V. (2005). The VirE3 protein of Agrobacterium mimics a host cell function required for plant genetic transformation. EMBO J 24, 428-437. 106. Lai, E.M., and Kado, C.I. (1998). Processed VirB2 is the major subunit of the promiscuous pilus of Agrobacterium tumefaciens. J Bacteriol 180, 2711-2717. 107. Lai, E.M., and Kado, C.I. (2000). The T-pilus of Agrobacterium tumefaciens. Trends Microbiol 8, 361-369. 108. Lai, E.M., Eisenbrandt, R., Kalkum, M., Lanka, E., and Kado, C.I. (2002). Biogenesis of T pili in Agrobacterium tumefaciens requires precise VirB2 propilin cleavage and cyclization. J Bacteriol 184, 327-330. 109. Lai, E.M., Shih, H.W., Wen, S.R., Cheng, M.W., Hwang, H.H., and Chiu, S.H. (2006). Proteomic analysis of Agrobacterium tumefaciens response to the vir gene inducer acetosyringone. Proteomics 6, 4130-4136. 110. Laus, M.C., Logman, T.J., Lamers, G.E., Van Brussel, A.A., Carlson, R.W., and Kijne, J.W. (2006). A novel polar surface polysaccharide from Rhizobium leguminosarum binds host plant lectin. Mol Microbiol 59, 1704-1713. 111. Li, J., Krichevsky, A., Vaidya, M., Tzfira, T., and Citovsky, V. (2005a). Uncoupling of the functions of the Arabidopsis VIP1 protein in transient and stable plant genetic transformation by Agrobacterium. Proc Natl Acad Sci USA 102, 5733-5738. 112. Li, J., Vaidya, M., White, C., Vainstein, A., Citovsky, V., and Tzfira, T. (2005b). Involvement of KU80 in T-DNA integration in plant cells. Proc Natl Acad Sci USA 102, 19231-19236. 113. Li, M., and Song, J. (2007) The N-and C-termini of the human Nogo molecules are intrinsically unstructured: Bioinformatics, CD NMR characterization, and functional implications. Proteins 68, 100–108. 114. Li, L., Jia, Y., Hou, Q., Charles, T.C., Nester, E.W., and Pan, S.Q. (2002). A global pH sensor: Agrobacterium sensor protein ChvG regulates acid-inducibile genes on its two chromosomes and Ti plasmid. Proc Natl Acad Sci USA 99, 12369–12374. 115. Lin, Y.H., Gao, R., Binns, A.N., and Lynn, D.G. (2008). Capturing the VirA/VirG TCS of Agrobacterium tumefaciens. Adv Exp Med Biol 631, 161-177. 116. Liu, Y., Vidensky, S., Ruggiero, A.M., Maier, S., Sitte, H.H., and Rothstein, J.D. (2008). Reticulon RTN2B regulates trafficking and function of neuronal glutamate transporter EAAC1. J Biol Chem 283, 6561-6571. 117. Llosa, M., Zunzunegui, S., and de la Cruz, F. (2003). Conjugative coupling proteins interact with cognate and heterologous VirB10-like proteins while exhibiting specificity for cognate relaxosomes. Proc. Natl Acad. Sci. USA 100, 10465–10470. 118. Llosa, M., Zupan, J., Baron, C., and Zambryski, P.C. (2000). The N- and C-terminal portions of the Agrobacterium VirB1 protein independently enhance tumorigenesis. J Bacteriol 182, 3437-3445. 119. Loake, G.J., Ashby, A.M., and Shaw, C.M. (1988). Attraction of Agrobacterium tumefaciens C58 towards sugars involves a highly sensitive chemotaxis system. J Gen Microbiol 134, 1427-1432. 120. Mansouri, H., Petit, A., Oger, P., and Dessaux, Y. (2002). Engineered rhizosphere: the trophic bias generated by opine-producing plants is independent of the opine type, the soil origin, and the plant species. Appl Environ Microbiol 68, 2562-2566. 121. Marmagne, A., Rouet, M.A., Ferro, M., Rolland, N., Alcon, C., Joyard, J., Garin, J., Barbier-Brygoo, H., and Ephritikhine, G. (2004). Identification of new intrinsic proteins in Arabidopsis plasma membrane proteome. Mol Cell Proteomics. 3, 675-691. 122. Marshall, K.C., Stout, R., and Mitchell, R. (1971). Mechanisms of the initial events in the sorption of marine bacteria to surfaces. J Gen Microbiol 68, 337-348. 123. Mayerhofer, R., Koncz-Kalman, Z., Nawrath, C., Bakkeren, G., Crameri, A., Angelis, K., Redei, G.P., Schell, J., Hohn, B., and Koncz, C. (1991) T-DNA integration: a mode of illegitimate recombination in plants. EMBO J 10, 697-704. 124. McCullen, C.A., and Binns, A.N. (2006). Agrobacterium tumefaciens and plant cell interactions and activities required for interkingdom macromolecular transfer. Annu Rev Cell Dev Biol 22, 101-127. 125. Montoya, A.L., Moore, L.W., Gordon, M.P., and Nester, E.W. (1978). Multiple genes coding for octopine-degrading enzymes in Agrobacterium. J Bacteriol 136, 909-915. 126. Mysore, K.S., Nam, J. and Gelvin, S.B. (2000). An Arabidopsis histone H2A mutant is deficient in Agrobacterium T-DNA integration. Proc Natl Acad Sci USA 97, 948–953. 127. Nam J., Matthysse, A.G., and Gelvin, S.B. (1997). Differences in susceptibility of Arabidopsis ecotypes to crown gall disease may result from a deficiency in T-DNA integration. Plant Cell 9, 317-333. 128. Nam, J., Mysore, K.S., and Gelvin, S.B. (1998). Agrobacterium tumefaciens transformation of the radiation hypersensitive Arabidopsis thaliana mutants uvh1 and rad5. Mol Plant Microbe Interact 11, 1136-1141. 129. Nam, J., Mysore, K.S., Zheng, C., Knue, M.K., Matthysse, A.G., and Gelvin, S.B. (1999). Identification of T-DNA tagged Arabidopsis mutants that are resistant to transformation by Agrobacterium. Mol Gen Genet 261, 429-438. 130. Nziengui, H., Bouhidel, K., Pillon, D., Der, C., Marty, F., and Schoefs, B. (2007). Reticulon-like proteins in Arabidopsis thaliana: structural organization and ER localization. FEBS letters 581, 3356-3362. 131. Nziengui, H., and Schoefs, B. (2009). Functions of reticulons in plants: What we can learn from animals and yeasts. Cell Mol Life Sci 66, 584-595. 132. O’Connell, K.P., and Handelsman, J. (1999). ChvA locus may be involved in export of neutral cyclic beta-1,2 linked D-glucan from Agrobacterium tumefaciens. Mol Plant Microbe Interact 2, 11–16. 133. Oertle, T., Klinger, M., Stuermer, C.A.O., and Schwab, M.E. (2003). A reticular rhapsody: phylogenic evolution and nomenclature of the RTN/Nogo gene family. FASEB Journal 17, 1238-1247. 134. Ophel, K., and Kerr, A. (1990). Agrobacterium vitis sp. nov. for strains of Agrobacterium biovar 3 from grapevines. Internat J Syst Bacteriol 40, 236-241. 135. Park, E.C., Shim, S., and Han, J.K. (2005). Identification and expression of XRTN2 and XRTN3 during Xenopus development. Dev Dyn 233, 240-247. 136. Parsek, M.R., and Fuqua, C. (2004). Biofilms 2003: emerging themes and challenges in studies of surface-associated microbial life. J Bacteriol 186, 4427-4440. 137. Parsons, S.F., and Salmon, E.D. (1997). Microtubule assembly in clarified Xenopus egg extracts. Cell Motil Cytoskeleton 36, 1–11. 138. Pattison, R. J. and Amtmann, A. (2009). N-glycan production in the endoplasmic reticulum of plants. Trends Plant Sci 14, 92-99. 139. Petit, A.S., Delhaye, J., Tempe, J., and Morel, G. (1970). Recherches sur les guanidines des tissue de crown gall. Mise en evidence d''une relation biochemique specifique entre les souches d''Agrobacterium tumefaciens et les tumeurs qu''elles induisent. Physiol 8, 205-213. 140. Piers, K.L., Heath, J.D., Liang, X., Stephens, K.M., and Nester, E.W. (1996). Agrobacterium tumefaciens-mediated transformation of yeast. Proc. Natl. Acad. Sci. USA 93, 1613–1618. 141. Powell, B. S., and C. I. Kado. 1990. Specific binding of VirG to the vir box requires a C-terminal domain and exhibits a minimum concentration threshold. Mol Microbiol 4, 2159–2166. 142. Rahier, A., Darnet, S., Bouvier, F., Camara, B., and Bard, M. (2006). Molecular and enzymatic characterizations of novel bifunctional 3b-hydroxysteroid dehydrogenases/C-4 decarboxylases from Arabidopsis thaliana. J Biol Chem 281, 27264–27277. 143. Ramey, B.E., Koutsoudis, M., von Bodman, S.B., Fuqua, C. (2004). Biofilm formation in plant-microbe associations. Curr Opin Microbiol 7, 602-609. 144. Reuhs, B.L., Kim, J.S., Matthysse, A.G. (1997). Attachment of Agrobacterium tumefaciens to carrot cells and Arabidopsis wound sites is correlated with the presence of a cell-associated, acidic polysaccharide. J Bacteriol 179, 5372-5379. 145. Roebroek, A.J., van de Velde, H.J., Van Bokhoven, A., Broers, J. L., Ramaekers, F.C., and Van de Ven, W.J. (1993). Cloning and expression of alternative transcripts of a novel neuroendocrine-specific gene and identification of its 135-kDa translational product. J Biol Chem 268, 13439-13447. 146. Rossi, L., Hohn, B., and Tinland, B. (1993). The VirD2 protein of Agrobacterium tumefaciens carries nuclear localization signals important for transfer of T-DNA to plant. Mol Gen Genet 239, 345-353. 147. Rossi, L., Hohn, B., and Tinland, B. (1996). Integration of complete transferred DNA units is dependent on the activity of virulence E2 protein of Agrobacterium tumefaciens. Proc Natl Acad Sci USA 93, 126-130. 148. Sakakibara, H., Kasahara, H., Ueda, N., Kojima, M., Takei, K., Hishiyama, S., Asami, T., Okada, K., Kamiya, Y., Yamaya, T., and Yamaguchi, S. (2005). Agrobacterium tumefaciens increases cytokinin production in plastids by modifying the biosynthetic pathway in the host plant. Proc Natl Acad Sci USA 102, 9972-9977. 149. Salomon, F., Deblaere, R., Leemans, J., Hernalsteens, J.P., Van Montagu, M., and Schell, J. (1984). Genetic identification of functions of TR-DNA transcripts in octopine crown galls. EMBO J 3, 141-146. 150. Scheiffele, P., Pansegrau, W., and Lanka, E. (1995). Initiation of Agrobacterium tumefaciens T-DNA processing. Purified proteins VirD1 and VirD2 catalyze site- and strand-specific cleavage of superhelical T-border DNA in vitro. J Biol Chem 270, 1269-1276. 151. Schmidt-Eisenlohr, H., Domke, N., Angerer, C., Wanner, G., Zambryski, P.C., and Baron, C. (1999). Vir proteins stabilize VirB5 and mediate its association with the T pilus of Agrobacterium tumefaciens. J Bacteriol 181, 7485-7492. 152. Schrammeijer, B., den Dulk-Ras, A., Vergunst, A.C., Jurado Jácome, E., and Hooykaas, P.J. (2003). Analysis of Vir protein translocation from Agrobacterium tumefaciens using Saccharomyces cerevisiae as a model: evidence for transport of a novel effector protein VirE3. Nucleic Acids Res 31, 860-868. 153. Schrammeijer, B., Hemelaar, J., and Hooykaas, P.J. (1998). The presence and characterization of a virF gene on Agrobacterium vitis Ti plasmids. Mol Plant Microbe Interact 11, 429-433. 154. Schrammeijer, B., Risseeuw, E., Pansegrau, W., Regensburg-Tuink, T.J., Crosby, W.L., and Hooykaas, P.J. (2001). Interaction of the virulence protein VirF of Agrobacterium tumefaciens with plant homologs of the yeast Skp1 protein. Curr Biol 11, 258-262. 155. Schwacke, R., Schneider, A., van der Graaff, E., Fischer, K., Catoni, E., Desimone, M., Frommer, W.B., Flügge, U.I., and Kunze, R. (2003). ARAMEMNON, a novel database for Arabidopsis integral membrane proteins. Plant Physiol 131, 16-26. 156. Senden, N.H., van de Velde, H.J., Broers, J.L., Timmer, E.D., Kuijpers, H.J., Roebroek, A.J., Van de Ven, W.J., and Ramaekers, F.C. (1994). Subcellular localization and supramolecular organization of neuroendocrine-specific protein B (NSP-B) in small cell lung cancer. Eur J Cell Biol 65, 341-353. 157. Shibata, Y., Hu, J., Kozlov, M.M., and Rapoport, T.A. (2009). Mechanisms shaping the membranes of cellular organelles. Annu Rev Cell Dev Biol 25, 329–354. 158. Shibata, Y., Voss, C., Rist, J.M., Hu, J., Rapoport, T.A., Prinz, W.A., and Voeltz, G.K. (2008). The reticulon and DP1/Yop1p proteins form immobile oligomers in the tubular endoplasmic reticulum. J Biol Chem 283, 18892–18904. 159. Shimoda, N., Toyoda-Yamamoto, A., Aoki, S., and Machida, Y. (1993). Genetic evidence for an interaction between the VirA sensor protein and the ChvE sugar-binding protein of Agrobacterium. J Biol Chem 268, 26552–26558. 160. Sitbon, F., Sundberg, B., Olsson, O., and Sandberg, G. (1991). Free and conjugated indoleacetic acid (IAA) contents in transgenic tobacco plants expressing the iaaM and iaaH IAA biosynthesis genes from Agrobacterium tumefacien
摘要: 
農桿菌(Agrobacterium tumefaciens)為一種植物病原菌菌,屬於根瘤菌科農桿菌屬,革蘭氏陰性桿菌,菌體內含有一環狀染色體及一線狀染色體、二種質體(pTiC58與pAtC58)。Ti質體會使農桿菌感染植物後,經由Ti質體內的T-DNA的轉移,進而造成植物產生冠瘿狀腫瘤,也可做為產生轉基因作物的工具。目前推論農桿菌會藉由第四型分泌系統(type IV secretion system,T4SS)中的T線毛(T-pilus),將T-DNA與重要的致病毒蛋白(virulence protein)送出菌體外,進而進入植物細胞。已知T4SS是由VirB1-11及VirD4蛋白質所組成一穿膜的蛋白質複合體,其中T線毛主要由VirB2蛋白質及VirB5、VirB7蛋白質所組成。之前研究指出在酵母菌雙雜交系統(yeast two-hybrid)及in vitro中,阿拉伯芥中的RTNLB1 [BTI1 (VirB2-interacting protein 1)]、RTNLB2 (BTI2)及RTNLB4 (BTI3)這三個蛋白質,會兩兩互相結合,且可和VirB2蛋白質結合。本研究中,分別將RTNLB2蛋白質或在RTNLB1、RTNLB2或RTNLB4蛋白質的N端接上了T7標籤序列或His標籤序列大量表現於轉殖植物中,經農桿菌感染測試後得知皆可增加被農桿菌感染的效率,進一步確認RTNLB1、2、4蛋白質在農桿菌感染植物之過程中皆扮演相當重要之角色。並檢測RTNLB家族中的其他成員是否也有參與此過程,分別測試rtnlb3、rtnlb5、rtnlb6或rtnlb7突變株被農桿菌感染後之效率,結果顯示其產生腫瘤及短暫表現T-DNA的效率與野生株相似或比野生株些微增加或降低,故推測RTNLB3、RTNLB5、RTNLB6及RTNLB7基因在農桿菌感染植物之過程扮演類似之功能。另外,為了瞭解RTNLB基因家族在植物生長發育中可能扮演的角色與功能,本研究分析RTNLB基因家族的同源性關係;及利用Genevestigator軟體,得知RTNLB1-21基因在阿拉伯芥不同組織部位中的表現皆有不同。也利用逆轉錄聚合酶連鎖反應,得知RTNLB3、RTNLB5、RTNLB6及RTNLB7基因在阿拉伯芥不同組織部位均有表現。由以上結果可推測RTNLB基因在植物生長發育中相當重要,對其所具有生理意義值得更深入地研究探討。未來可以利用帶有標籤序列的RTNLB1、2、4轉殖株,進一步觀察在農桿菌感染植物時,RTNLB1、2、4蛋白質在細胞中分布之位置,或與之結合的植物蛋白質進行免疫沈澱並分離。以藉此更進一步釐清在農桿菌感染植物時,RTNLB1、2、4蛋白質所扮演的角色,與RTNLB蛋白質在植物中的功能。期許可以更廣泛的利用農桿菌來獲得轉殖物種,並提高轉殖的效率。

Agrobacterium tumefaciens is a plant pathogen resided in the soil and is a Gram negative bacteria. The A. tumefaciens contains a circular and a linear chromosome, and two plasmids, pTiC58 and pAtC58. The A. tumefaciens infects plants and causes crown gall disease due to the transfer of the T-DNA (transferred DNA) on the Ti (tumor-inducing) plasmid. Because of the ability to transfer DNA between different kingdoms, the A. tumefaciens is also used to generate genetic modified crops. The A. tumefaciens utilize the type IV secretion system (T4SS) to secrete T-DNA and virulence proteins from the bacterium into plant cells. The T4SS contains a transmembrane protein complex composed of the VirB1-11 and VirD4 proteins and the T-pilus. The VirB2, VirB5, and VirB7 are the major and minor components of the T-pilus, respectively. A previous study has shown that three Arabidopsis plant proteins, RTNLB1 [BTI1 (VirB2-interacting protein 1)], RTNLB2 (BTI2), and RTNLB4 (BTI3), interacted with each other, and interacted with the VirB2 protein in the yeast two-hybrid system and in vitro. In order to understand the roles of RTNLB1, 2, and 4 during A. tumefaciens infection process, I generated overexpression RTNLB1, 2, or 4 Arabidopsis transgenic plants and performed A. tumefaciens infection assays. The overexpression RTNLB1, 2, or 4 transgenic plants showed higher transformation efficiencies than wild-type plants, suggesting RTNLB1, 2, and 4 all participate in A. tumefaciens infection process. Additionally, in order to test if other members of RTNLB are involved in A. tumefaciens transformation process, rtnlb3, rtnlb5, rtnlb6, or rtnlb7 T-DNA insertion mutants were obtained and tested further. Some of the tested rtnlb3, 5, 6, and 7 mutants showed similar transformation efficiencies as the wild-type, while others shower slightly increased or decreased transformation efficiencies compared to wild-type plants. These results suggest the RTNLB3, 5, 6, and 7 might be functional redundant in A. tumefaciens transformation process. In order to understand the possible functions of RTNLB genes in plant growth and development, the Genevestigator software was used to analyze the expression patterns and levels of RTNLB1-21 genes in different tissues of Arabidopsis plants. Results from various microarray experiments showed that RTNLB1-21 genes express differently in different tissues of Arabidopsis. Additionally, reverse transcription polymerase chain reaction (RT-PCR) results showed that RTNLB3, RTNLB5, RTNLB6 and RTNLB7 genes express ubiquitously in various plant tissues. In conclusion, results shown in this study suggest that RTNLB1-21 genes are important during plant growth and development. In the future, we could utilize immunoprecipitation approaches to understand further the functions of RTNLB1, 2, and 4 in Agrobacterium infection process and in plants.
URI: http://hdl.handle.net/11455/23135
其他識別: U0005-2610201014152400
Appears in Collections:生命科學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.