Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/23141
標題: 台灣傳染性支氣管炎病毒核殼基因重組與正向天擇之探討
Characterization of recombination and positive selection in nucleocapsid gene of Taiwanese infectious bronchitis viruses
作者: 郭淑明
Kuo, Shu-Ming
關鍵字: infectious bronchitis virus;傳染性支氣管炎病毒;nucleocapsid gene;recombination;positive selection;RNA-binding capacity;coronavirus;surface plasmon resonance;核殼基因;重組;正向天擇;RNA結合能力;冠狀病毒;表面電漿共振
出版社: 生命科學系所
引用: Adzhar, A., Gough, R.E., Haydon, D., Shaw, K., Britton, P., Cavanagh, D., 1997, Molecular analysis of the 793/B serotype of infectious bronchitis virus in Great Britain. Avian Pathol 26, 625-640. Adzhar, A.B., Shaw, K., Britton, P., Cavanagh, D., 1995, Avian infectious bronchitis virus: differences between 793/B and other strains. Vet Rec 136, 548. Ambali, A.G., Jones, R.C., 1990, Early pathogenesis in chicks of infection with an enterotropic strain of infectious bronchitis virus. Avian Dis 34, 809-817. Ammayappan, A., Upadhyay, C., Gelb, J., Jr., Vakharia, V.N., 2008, Complete genomic sequence analysis of infectious bronchitis virus Ark DPI strain and its evolution by recombination. Virol J 5, 157. Arnold, K., Bordoli, L., Kopp, J., Schwede, T., 2006, The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22, 195-201. Arvidson, Y., Tannock, G.A., Zerbes, M., Ignjatovic, J., 1991, Efficacy of Australian vaccines against recent isolates of avian infectious bronchitis viruses. Aust Vet J 68, 211-212. Banner, L.R., Keck, J.G., Lai, M.M., 1990, A clustering of RNA recombination sites adjacent to a hypervariable region of the peplomer gene of murine coronavirus. Virology 175, 548-555. Banner, L.R., Lai, M.M., 1991, Random nature of coronavirus RNA recombination in the absence of selection pressure. Virology 185, 441-445. Baric, R.S., Fu, K., Schaad, M.C., Stohlman, S.A., 1990, Establishing a genetic recombination map for murine coronavirus strain A59 complementation groups. Virology 177, 646-656. Baric, R.S., Nelson, G.W., Fleming, J.O., Deans, R.J., Keck, J.G., Casteel, N., Stohlman, S.A., 1988, Interactions between coronavirus nucleocapsid protein and viral RNAs: implications for viral transcription. J Virol 62, 4280-4287. Beach, L.R., Schalm, O.W., 1936, A filterable virus, distinct from that of laryngotracheitis, the cause of a respiratory disease of chicks. Poult Sci 15, 199-206. Beaudette, F.R., Hudson, C.B., 1937, Cultivation of the virus of infectious bronchitis. J Am Vet Med Assoc 90, 51-58. Blair, A.P., 1942, Isolating mechanisms in a complex of four species of toads. Biol Symp 6, 235-249. Boots, A.M., Benaissa-Trouw, B.J., Hesselink, W., Rijke, E., Schrier, C., Hensen, E.J., 1992, Induction of anti-viral immune responses by immunization with recombinant-DNA encoded avian coronavirus nucleocapsid protein. Vaccine 10, 119-124. Brian, D.A., Baroc, R.S., 2005, Coronavirus genome structure and replication. In: Compans, R.W., Cooper, M.D., Honjo, T., Melchers, F, Olsnes, S., Vogt, P.K. (Eds.). Coronavirus replication and reverse genetics. Springer Berlin Heidelberg, New York, 1-30. Brierley, I., Boursnell, M.E., Binns, M.M., Bilimoria, B., Blok, V.C., Brown, T.D., Inglis, S.C., 1987, An efficient ribosomal frame-shifting signal in the polymerase-encoding region of the coronavirus IBV. EMBO J 6, 3779-3785. Callison, S.A., Jackwood, M.W., Hilt, D.A., 1999, Infectious bronchitis virus S2 gene sequence variability may affect S1 subunit specific antibody binding. Virus Genes 19, 143-151. Canducci, F., Marinozzi, M.C., Sampaolo, M., Berre, S., Bagnarelli, P., Degano, M., Gallotta, G., Mazzi, B., Lemey, P., Burioni, R., Clementi, M., 2009, Dynamic features of the selective pressure on the human immunodeficiency virus type 1 (HIV-1) gp120 CD4-binding site in a group of long term non progressor (LTNP) subjects. Retrovirology 6, 4. Casais, R., Dove, B., Cavanagh, D., Britton, P., 2003, Recombinant avian infectious bronchitis virus expressing a heterologous spike gene demonstrates that the spike protein is a determinant of cell tropism. J Virol 77, 9084-9089. Cavanagh, D., 1983, Coronavirus IBV: further evidence that the surface projections are associated with two glycopolypeptides. J Gen Viro 64 (Pt 8), 1787-1791. Cavanagh, D., 2003, Severe acute respiratory syndrome vaccine development: experiences of vaccination against avian infectious bronchitis coronavirus. Avian Pathol 32, 567-582. Cavanagh, D., 2005, Coronaviruses in poultry and other birds. Avian Pathol 34, 439-448. Cavanagh, D., 2007, Coronavirus avian infectious bronchitis virus. Vet Res 38, 281-297. Cavanagh, D., Davis, P.J., 1986, Coronavirus IBV: removal of spike glycopolypeptide S1 by urea abolishes infectivity and haemagglutination but not attachment to cells. J Gen Virol 67 (Pt 7), 1443-1448. Cavanagh, D., Davis, P.J., 1988, Evolution of avian coronavirus IBV: sequence of the matrix glycoprotein gene and intergenic region of several serotypes. The J Gen Virol 69 (Pt 3), 621-629. Cavanagh, D., Davis, P.J., Cook, J.K., 1992a, Infectious bronchitis virus: evidence for recombination within the Massachusetts serotype. Avian Pathol 21, 401-408. Cavanagh, D., Davis, P.J., Cook, J.K., Li, D., Kant, A., Koch, G., 1992b, Location of the amino acid differences in the S1 spike glycoprotein subunit of closely related serotypes of infectious bronchitis virus. Avian Pathol 21, 33-43. Cavanagh, D., Davis, P.J., Darbyshire, J.H., Peters, R.W., 1986a, Coronavirus IBV: virus retaining spike glycopolypeptide S2 but not S1 is unable to induce virus-neutralizing or haemagglutination-inhibiting antibody, or induce chicken tracheal protection. J Gen Virol 67 (Pt 7), 1435-1442. Cavanagh, D., Davis, P.J., Mockett, A.P., 1988, Amino acids within hypervariable region 1 of avian coronavirus IBV (Massachusetts serotype) spike glycoprotein are associated with neutralization epitopes. Virus Res 11, 141-150. Cavanagh, D., Davis, P.J., Pappin, D.J., Binns, M.M., Boursnell, M.E., Brown, T.D., 1986b, Coronavirus IBV: partial amino terminal sequencing of spike polypeptide S2 identifies the sequence Arg-Arg-Phe-Arg-Arg at the cleavage site of the spike precursor propolypeptide of IBV strains Beaudette and M41. Virus Res 4, 133-143. Cavanagh, D., Elus, M.M., Cook, J.K., 1997, Relationship between sequence variation in the S1 spike protein of infectious bronchitis virus and the extent of cross-protection in vivo. Avian Pathol 26, 63-74. Cavanagh, D., Mawditt, K., Adzhar, A., Gough, R.E., Picault, J.P., Naylor, C.J., Haydon, D., Shaw, K., Britton, P., 1998, Does IBV change slowly despite the capacity of the spike protein to vary greatly? Adv Exp Med Biol 440, 729-734. Cavanagh, D., Mawditt, K., Sharma, M., Drury, S.E., Ainsworth, H.L., Britton, P., Gough, R.E., 2001, Detection of a coronavirus from turkey poults in Europe genetically related to infectious bronchitis virus of chickens. Avian Pathol 30, 355-368. Cavanagh, D., Mawditt, K., Welchman Dde, B., Britton, P., Gough, R.E., 2002, Coronaviruses from pheasants (Phasianus colchicus) are genetically closely related to coronaviruses of domestic fowl (infectious bronchitis virus) and turkeys. Avian Pathol 31, 81-93. Cavanagh, D., Naqi, S.A., 2003, Infectious bronchitis. In: Saif YM, Fadly AM, McDougald LR, Swayne DE (Eds). Disease of poultry 11th ed. Ames: Iowa State Press, 101-119. Chang, C.K., Sue, S.C., Yu, T.H., Hsieh, C.M., Tsai, C.K., Chiang, Y.C., Lee, S.J., Hsiao, H.H., Wu, W.J., Chang, C.F., Huang, T.H., 2005, The dimer interface of the SARS coronavirus nucleocapsid protein adapts a porcine respiratory and reproductive syndrome virus-like structure. FEBS Lett 579, 5663-5668. Chang, P., Kuo, T., Chueh, L., Wang, C., 1998, Seqencing and analysis of S1 gene of infectious bronchitis viruses isolated in Taiwan. J Chin Soc Vet Sci 24, 179-187. Chen, H., Gill, A., Dove, B.K., Emmett, S.R., Kemp, C.F., Ritchie, M.A., Dee, M., Hiscox, J.A., 2005, Mass spectroscopic characterization of the coronavirus infectious bronchitis virus nucleoprotein and elucidation of the role of phosphorylation in RNA binding by using surface plasmon resonance. J Virol 79, 1164-1179. Chen, H.W., Huang, Y.P., Wang, C.H., 2009, Identification of Taiwan and China-like recombinant avian infectious bronchitis viruses in Taiwan. Virus Res 140, 121-129. Chen, H.W., Huang, Y.P., Wang, C.H., 2010, Identification of intertypic recombinant infectious bronchitis viruses from slaughtered chickens. Poult Sci 89, 439-446. Chen, H.W., Wang, C.H., 2010, A multiplex reverse transcriptase-PCR assay for the genotyping of avian infectious bronchitis viruses. Avian Dis 54, 104-108. Collisson, E.W., Parr, R.L., Wang, L., Williams, A.K., 1992, An overview of the molecular characteristics of avian infectious bronchitis virus. Poult Sci Rev 4, 41-55. Collisson, E.W., Pei, J., Dzielawa, J., Seo, S.H., 2000, Cytotoxic T lymphocytes are critical in the control of infectious bronchitis virus in poultry. Dev Comp Immunol 24, 187-200. Cook, J., 2002, Coronoaviridae. In: F Jordan, M Pattison, D Alexander, T. Faragher (Eds.). Poultry Disease 5th ed. W. B. Saunders, London, 298-306. Cook, J.K., 1984, The classification of new serotypes of infectious bronchitis virus isolated from poultry flocks in Britain between 1981 and 1983. Avian Pathol 13, 733-741. Cumming, R.B., 1963, Infectious avian nephrosis (uremia) in Australia. Aust Vet J 39, 145-147. Davies, H.A., Dourmashkin, R.R., Macnaughton, M.R., 1981, Ribonucleoprotein of avian infectious bronchitis virus. J Gen Virol 53, 67-74. Delaplane, L.P., Stuart, H.O., 1941, The modification of infectious bronchitis virus of chickens as the result of propagation in embryonated chicken eggs. RIAES, 284. Dolz, R., Pujols, J., Ordonez, G., Porta, R., Majo, N., 2008, Molecular epidemiology and evolution of avian infectious bronchitis virus in Spain over a fourteen-year period. Virology 374, 50-59. Domingo, E., Holland, J.J., 1997, RNA virus mutations and fitness for survival. Annu Rev Microbiol 51, 151-178. Doron-Faigenboim, A., Stern, A., Mayrose, I., Bacharach, E., Pupko, T., 2005, Selecton: a server for detecting evolutionary forces at a single amino-acid site. Bioinformatics 21, 2101-2103. Drake, J.W., 1993, Rates of spontaneous mutation among RNA viruses. PNAS 90, 4171-4175. Duffy, S., Shackelton, L.A., Holmes, E.C., 2008, Rates of evolutionary change in viruses: patterns and determinants. Nat Rev Genet 9, 267-276. Eigen, M., 1987, New concepts for dealing with the evolution of nucleic acids. Cold Spring Harbor symposia on quantitative biology 52, 307-320. el Houadfi, M., Jones, R.C., 1985, Isolation of avian infectious bronchitis viruses in Morocco including an enterotropic variant. Vet Rec 116, 445. Enjuanes, L., Sola, I., Alonso, S., Escors, D., Zuniga, S., 2005, Coronavirus reverse genetics and development of vectors for gene expression. Curr Top Microbiol Immunol 287, 161-197. Fan, H., Ooi, A., Tan, Y.W., Wang, S., Fang, S., Liu, D.X., Lescar, J., 2005, The nucleocapsid protein of coronavirus infectious bronchitis virus: crystal structure of its N-terminal domain and multimerization properties. Structure 13, 1859-1868. Furuse, Y., Suzuki, A., Kamigaki, T., Oshitani, H., 2009, Evolution of the M gene of the influenza A virus in different host species: large-scale sequence analysis. Virol J 6, 67. Gelb, J., Jr., Keeler, C.L., Jr., Nix, W.A., Rosenberger, J.K., Cloud, S.S., 1997, Antigenic and S-1 genomic characterization of the Delaware variant serotype of infectious bronchitis virus. Avian Dis 41, 661-669. Gelb, J., Jr., Wolff, J.B., Moran, C.A., 1991, Variant serotypes of infectious bronchitis virus isolated from commercial layer and broiler chickens. Avian Dis 35, 82-87. Gelb, J.J.J., M. W., 1998, Infectious bronchitis. In: Swayne, D.E., Glisson, J.R., Jackwood, M.W., Pearson, J.E., Reed, W.M. (Eds.), A Laboratory Manual for the Isolation and Identification of Avian Pathogens. American Association of Avian Pathologists: Kennett Square, 169-174. Guy, J.S., 2000, Turkey coronavirus is more closely related to avian infectious bronchitis virus than to mammalian coronaviruses: a review. Avian Pathol 29, 207-212. Han, Z., Sun, C., Yan, B., Zhang, X., Wang, Y., Li, C., Zhang, Q., Ma, Y., Shao, Y., Liu, Q., Kong, X., Liu, S., 2011, A 15-year analysis of molecular epidemiology of avian infectious bronchitis coronavirus in China. Infect Genet Evol 11, 190-200. Hiscox, J.A., Mawditt, K.L., Cavanagh, D., Britton, P., 1995, Investigation of the control of coronavirus subgenomic mRNA transcription by using T7-generated negative-sense RNA transcripts. J Virol 69, 6219-6227. Hodgson, T., Casais, R., Dove, B., Britton, P., Cavanagh, D., 2004, Recombinant infectious bronchitis coronavirus Beaudette with the spike protein gene of the pathogenic M41 strain remains attenuated but induces protective immunity. J Virol 78, 13804-13811. Holmes, E.C., Rambaut, A., 2004, Viral evolution and the emergence of SARS coronavirus. Philos Trans R Soc Lond B Biol Sci 359, 1059-1065. Hon, C.C., Lam, T.Y., Shi, Z.L., Drummond, A.J., Yip, C.W., Zeng, F., Lam, P.Y., Leung, F.C., 2008, Evidence of the recombinant origin of a bat severe acute respiratory syndrome (SARS)-like coronavirus and its implications on the direct ancestor of SARS coronavirus. J Virol 82, 1819-1826. Huang, Q., Yu, L., Petros, A.M., Gunasekera, A., Liu, Z., Xu, N., Hajduk, P., Mack, J., Fesik, S.W., Olejniczak, E.T., 2004a, Structure of the N-terminal RNA-binding domain of the SARS CoV nucleocapsid protein. Biochemistry 43, 6059-6063. Huang, Y.P., Lee, H.C., Cheng, M.C., Wang, C.H., 2004b, S1 and N gene analysis of avian infectious bronchitis viruses in Taiwan. Avian Dis 48, 581-589. Huelsenbeck, J.P., Ronquist, F., 2001, MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754-755. Hughes, A.L., 2007, Looking for Darwin in all the wrong places: the misguided quest for positive selection at the nucleotide sequence level. Heredity 99, 364-373. Hutchens, T.W., Yip, T.T., 1990, Differential interaction of peptides and protein surface structures with free metal ions and surface-immobilized metal ions. J Chromatogr A 500, 531-542. Ignjatovic, J., Sapats, S., 2005, Identification of previously unknown antigenic epitopes on the S and N proteins of avian infectious bronchitis virus. Arch Virol 150, 1813-1831. Jackwood, M.W., Hilt, D.A., McCall, A.W., Polizzi, C.N., McKinley, E.T., Williams, S.M., 2009, Infectious bronchitis virus field vaccination coverage and persistence of Arkansas-type viruses in commercial broilers. Avian Dis 53, 175-183. Jackwood, M.W., Hilt, D.A., Williams, S.M., Woolcock, P., Cardona, C., O''Connor, R., 2007, Molecular and serologic characterization, pathogenicity, and protection studies with infectious bronchitis virus field isolates from California. Avian Dis 51, 527-533. Jensen, J.D., Wong, A., Aquadro, C.F., 2007, Approaches for identifying targets of positive selection. Trends Genet 23, 568-577. Jeong, Y.S., Makino, S., 1994, Evidence for coronavirus discontinuous transcription. J Virol 68, 2615-2623. Jia, W., Karaca, K., Parrish, C.R., Naqi, S.A., 1995, A novel variant of avian infectious bronchitis virus resulting from recombination among three different strains. Arch Virol 140, 259-271. Jungherr, E.I., Chomiak, T.W., Luginbuhl, R.E., 1956, Immunologic differences in strains of infectious bronchitis virus. In: Proc. 60th Annual Meeting U.S. Livestock Sanitary Association, 203-209. Keck, J.G., Soe, L.H., Makino, S., Stohlman, S.A., Lai, M.M., 1988, RNA recombination of murine coronaviruses: recombination between fusion-positive mouse hepatitis virus A59 and fusion-negative mouse hepatitis virus 2. J Virol 62, 1989-1998. Keck, J.G., Stohlman, S.A., Soe, L.H., Makino, S., Lai, M.M., 1987, Multiple recombination sites at the 5''-end of murine coronavirus RNA. Virology 156, 331-341. Kelley, J.L., Swanson, W.J., 2008, Positive selection in the human genome: from genome scans to biological significance. Annu Rev Genomics Hum Genet 9, 143-160. King, D.J., 1988, Identification of recent infectious bronchitis virus isolates that are serologically different from current vaccine strains. Avian Dis 32, 362-364. Kingham, B.F., Keeler, C.L., Jr., Nix, W.A., Ladman, B.S., Gelb, J., Jr., 2000, Identification of avian infectious bronchitis virus by direct automated cycle sequencing of the S-1 gene. Avian Dis 44, 325-335. Kinnear, M., Linde, C.C., 2010, Capsid gene divergence in rabbit hemorrhagic disease virus. J Gen Virol 91, 174-181. Koch, G., Hartog, L., Kant, A., van Roozelaar, D.J., 1990, Antigenic domains on the peplomer protein of avian infectious bronchitis virus: correlation with biological functions. J Gen Virol 71 (Pt 9), 1929-1935. Kosakovsky Pond, S.L., Posada, D., Gravenor, M.B., Woelk, C.H., Frost, S.D., 2006, GARD: a genetic algorithm for recombination detection. Bioinformatics 22, 3096-3098. Kottier, S.A., Cavanagh, D., Britton, P., 1995a, Experimental evidence of recombination in coronavirus infectious bronchitis virus. Virology 213, 569-580. Kottier, S.A., Cavanagh, D., Britton, P., 1995b, First experimental evidence of recombination in infectious bronchitis virus. Recombination in IBV. Adv Exp Med Biol 380, 551-556. Kusters, J.G., Jager, E.J., Niesters, H.G., van der Zeijst, B.A., 1990, Sequence evidence for RNA recombination in field isolates of avian coronavirus infectious bronchitis virus. Vaccine 8, 605-608. Kusters, J.G., Niesters, H.G., Bleumink-Pluym, N.M., Davelaar, F.G., Horzinek, M.C., Van der Zeijst, B.A., 1987, Molecular epidemiology of infectious bronchitis virus in The Netherlands. J Gen Virol 68 (Pt 2), 343-352. Lai, M.M., 1990, Coronavirus: organization, replication and expression of genome. Annu Rev Microbiol 44, 303-333. Lai, M.M., 1992, RNA recombination in animal and plant viruses. Microbiol Rev 56, 61-79. Lai, M.M., Baric, R.S., Makino, S., Keck, J.G., Egbert, J., Leibowitz, J.L., Stohlman, S.A., 1985, Recombination between nonsegmented RNA genomes of murine coronaviruses. J Virol 56, 449-456. Lai, M.M., Cavanagh, D., 1997, The molecular biology of coronaviruses. Adv Virus Res 48, 1-100. Lai, M.M.C., Holmes, K.V., 2001, Coronaviridae: the virus and their replication. In: Knipe, D.M, Howley, P.M. (Eds.). Field Virology, 4th ed. Linppincott Williams & Wilkins Publisher, Philadelphia, 1163-1185. Laskowski, R.A., Rullmannn, J.A., MacArthur, M.W., Kaptein, R., Thornton, J.M., 1996, AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 8, 477-486. Li, L., Xue, C., Chen, F., Qin, J., Xie, Q., Bi, Y., Cao, Y., 2010, Isolation and genetic analysis revealed no predominant new strains of avian infectious bronchitis virus circulating in South China during 2004-2008. Vet Microbiol 143, 145-154. Liao, C.L., Lai, M.M., 1992, RNA recombination in a coronavirus: recombination between viral genomic RNA and transfected RNA fragments. J Virol 66, 6117-6124. Lin, Z., Kato, A., Kudou, Y., Umeda, K., Ueda, S., 1991, Typing of recent infectious bronchitis virus isolates causing nephritis in chicken. Arch Virol 120, 145-149. Liu, S., Wang, Y., Ma, Y., Han, Z., Zhang, Q., Shao, Y., Chen, J., Kong, X., 2008, Identification of a newly isolated avian infectious bronchitis coronavirus variant in China exhibiting affinity for the respiratory tract. Avian Dis 52, 306-314. Liu, S., Zhang, X., Wang, Y., Li, C., Han, Z., Shao, Y., Li, H., Kong, X., 2009a, Molecular characterization and pathogenicity of infectious bronchitis coronaviruses: complicated evolution and epidemiology in china caused by cocirculation of multiple types of infectious bronchitis coronaviruses. Intervirology 52, 223-234. Liu, S.W., Zhang, Q.X., Chen, J.D., Han, Z.X., Liu, X., Feng, L., Shao, Y.H., Rong, J.G., Kong, X.G., Tong, G.Z., 2006, Genetic diversity of avian infectious bronchitis coronavirus strains isolated in China between 1995 and 2004. Arch Virol 151, 1133-1148. Liu, X.L., Su, J.L., Zhao, J.X., Zhang, G.Z., 2009b, Complete genome sequence analysis of a predominant infectious bronchitis virus (IBV) strain in China. Virus Genes 38, 56-65. Lole, K.S., Bollinger, R.C., Paranjape, R.S., Gadkari, D., Kulkarni, S.S., Novak, N.G., Ingersoll, R., Sheppard, H.W., Ray, S.C., 1999, Full-length human immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in India, with evidence of intersubtype recombination. J Virol 73, 152-160. Lu, Y., Lee, S., Yang, W., Liu, J., Wu, C., 1966, Studies on infectious bronchitis of chicken. Exp Rep Taiwan Prov Res Inst Anim Health 3, 72-78. Lu, Y., Shieh, H., Tsai, H., Lin, D., Lee, Y., 1993, The incidence and virus isolation of infectious bronchitis in chickens in Taiwan. J Chin Soc Vet Sci 19, 119-129. Lucio, B., Fabricant, J., 1990, Tissue tropism of three cloacal isolates and Massachusetts strain of infectious bronchitis virus. Avian Dis 34, 865-870. Magiorkinis, G., Magiorkinis, E., Paraskevis, D., Vandamme, A.M., Van Ranst, M., Moulton, V., Hatzakis, A., 2004, Phylogenetic analysis of the full-length SARS-CoV sequences: evidence for phylogenetic discordance in three genomic regions. J Med Virol 74, 369-372. Makino, S., Keck, J.G., Stohlman, S.A., Lai, M.M., 1986, High-frequency RNA recombination of murine coronaviruses. J Virol 57, 729-737. Malpica, J.M., Fraile, A., Moreno, I., Obies, C.I., Drake, J.W., Garcia-Arenal, F., 2002, The rate and character of spontaneous mutation in an RNA virus. Genetics 162, 1505-1511. Martin, D., Rybicki, E., 2000, RDP: detection of recombination amongst aligned sequences. Bioinformatics 16, 562-563. Maynard Smith, J., Szathmáry, E., 1995, The major transitions in evolution. Freeman, Oxford. Mondal, S.P., Cardona, C.J., 2004, Comparison of four regions in the replicase gene of heterologous infectious bronchitis virus strains. Virology 324, 238-248. Moore, K.M., Jackwood, M.W., Hilt, D.A., 1997, Identification of amino acids involved in a serotype and neutralization specific epitope within the S1 subunit of avian infectious bronchitis virus. Arch Virol 142, 2249-2256. Moya, A., Holmes, E.C., Gonzalez-Candelas, F., 2004, The population genetics and evolutionary epidemiology of RNA viruses. Nat Rev Microbiol 2, 279-288. Nagy, P.D., Bujarski, J.J., 1992, Genetic recombination in brome mosaic virus: effect of sequence and replication of RNA on accumulation of recombinants. J Virol 66, 6824-6828. Nelson, G.W., Stohlman, S.A., 1993, Localization of the RNA-binding domain of mouse hepatitis virus nucleocapsid protein. J Gen Virol 74 (Pt 9), 1975-1979. Nielsen, R., Yang, Z., 2003, Estimating the distribution of selection coefficients from phylogenetic data with applications to mitochondrial and viral DNA. Mol Biol Evol 20, 1231-1239. Page, R.D.M., Holmes, E.C., 1998, Molecular Evolution: a Phylogenetic Approach. Blackwell, Oxford. Pei, J., Briles, W.E., Collisson, E.W., 2003, Memory T cells protect chicks from acute infectious bronchitis virus infection. Virology 306, 376-384. Perlman, S., Netland, J., 2009, Coronaviruses post-SARS: update on replication and pathogenesis. Nat Rev Microbiol 7, 439-450. Rota, P.A., Oberste, M.S., Monroe, S.S., Nix, W.A., Campagnoli, R., Icenogle, J.P., Penaranda, S., Bankamp, B., Maher, K., Chen, M.H., Tong, S., Tamin, A., Lowe, L., Frace, M., DeRisi, J.L., Chen, Q., Wang, D., Erdman, D.D., Peret, T.C., Burns, C., Ksiazek, T.G., Rollin, P.E., Sanchez, A., Liffick, S., Holloway, B., Limor, J., McCaustland, K., Olsen-Rasmussen, M., Fouchier, R., Gunther, S., Osterhaus, A.D., Drosten, C., Pallansch, M.A., Anderson, L.J., Bellini, W.J., 2003, Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 300, 1394-1399. Saikatendu, K.S., Joseph, J.S., Subramanian, V., Neu Characterization of a novel coronavirus associated with severe acute respiratory syndrome man, B.W., Buchmeier, M.J., Stevens, R.C., Kuhn, P., 2007, Ribonucleocapsid formation of severe acute respiratory syndrome coronavirus through molecular action of the N-terminal domain of N protein. J Virol 81, 3913-3921. Salminen, M., 2003, Detecting recombination in viral sequences. In: Marco Salemi, Anne-Mieke Vandamme (Eds). The Phylogenetic Handbook: A Practical Approach to DNA and Protein Phylogeny. Cambridge University Press, UK, 348-377. Sapats, S.I., Ashton, F., Wright, P.J., Ignjatovic, J., 1996, Sequence analysis of the S1 glycoprotein of infectious bronchitis viruses: identification of a novel genotypic group in Australia. J Gen Virol 77 (Pt 3), 413-418. Schalk, A.F., Hawn, M.C., 1931, An apparently new respiratory new respiratory disease of chicks. J Am Vet Med Assoc 78, 413-422. Seah, J.N., Yu, L., Kwang, J., 2000, Localization of linear B-cell epitopes on infectious bronchitis virus nucleocapsid protein. Vet Microbiol 75, 11-16. Seo, S.H., Collisson, E.W., 1997, Specific cytotoxic T lymphocytes are involved in in vivo clearance of infectious bronchitis virus. J Virol 71, 5173-5177. Seo, S.H., Pei, J., Briles, W.E., Dzielawa, J., Collisson, E.W., 2000, Adoptive transfer of infectious bronchitis virus primed alphabeta T cells bearing CD8 antigen protects chicks from acute infection. Virology 269, 183-189. Seo, S.H., Wang, L., Smith, R., Collisson, E.W., 1997, The carboxyl-terminal 120-residue polypeptide of infectious bronchitis virus nucleocapsid induces cytotoxic T lymphocytes and protects chickens from acute infection. J Virol 71, 7889-7894. Sethna, P.B., Brian, D.A., 1997, Coronavirus genomic and subgenomic minus-strand RNAs copartition in membrane-protected replication complexes. J Virol 71, 7744-7749. Shen, J., Kirk, B.D., Ma, J., Wang, Q., 2009, Diversifying selective pressure on influenza B virus hemagglutinin. J Med Virol 81, 114-124. Shieh, H.K., Shien, J.H., Chou, H.Y., Shimizu, Y., Chen, J.N., Chang, P.C., 2004, Complete nucleotide sequences of S1 and N genes of infectious bronchitis virus isolated in Japan and Taiwan. J Vet Med Sci 66, 555-558. Sola, I., Moreno, J.L., Zuniga, S., Alonso, S., Enjuanes, L., 2005, Role of nucleotides immediately flanking the transcription-regulating sequence core in coronavirus subgenomic mRNA synthesis. J Virol 79, 2506-2516. Spencer, K.A., Hiscox, J.A., 2006, Characterisation of the RNA binding properties of the coronavirus infectious bronchitis virus nucleocapsid protein amino-terminal region. FEBS letters 580, 5993-5998. Stavrinides, J., Guttman, D.S., 2004, Mosaic evolution of the severe acute respiratory syndrome coronavirus. J Virol 78, 76-82. Stemple, D.L., Anderson, D.J., 1992, Isolation of a stem cell for neurons and glia from the mammalian neural crest. Cell 71, 973-985. Stephens, R.S., Wagar, E.A., Schoolnik, G.K., 1988, High-resolution mapping of serovar-specific and common antigenic determinants of the major outer membrane protein of Chlamydia trachomatis. J Exp Med 167, 817-831. Stern, A., Doron-Faigenboim, A., Erez, E., Martz, E., Bacharach, E., Pupko, T., 2007, Selecton 2007: advanced models for detecting positive and purifying selection using a Bayesian inference approach. Nucleic Acids Res 35, W506-511. Stohlman, S.A., Baric, R.S., Nelson, G.N., Soe, L.H., Welter, L.M., Deans, R.J., 1988, Specific interaction between coronavirus leader RNA and nucleocapsid protein. J Virol 62, 4288-4295. Strauss, J.H., Strauss, E.G., 1988, Evolution of RNA viruses. Annu Rev Microbiol 42, 657-683. Sun, L., Zhang, G.H., Jiang, J.W., Fu, J.D., Ren, T., Cao, W.S., Xin, C.A., Liao, M., Liu, W.J., 2007, A Massachusetts prototype like coronavirus isolated from wild peafowls is pathogenic to chickens. Virus Res 130, 121-128. Tamura, K., Dudley, J., Nei, M., Kumar, S., 2007, MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Mol Biol Evol 24, 1596-1599. Tan, Y.W., Fang, S., Fan, H., Lescar, J., Liu, D.X., 2006, Amino acid residues critical for RNA-binding in the N-terminal domain of the nucleocapsid protein are essential determinants for the infectivity of coronavirus in cultured cells. Nucleic Acids Res 34, 4816-4825. Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., Higgins, D.G., 1997, The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876-4882. Thompson, J.D., Higgins, D.G., Gibson, T.J., 1994, CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673-4680. Thornton, J.M., Edwards, M.S., Taylor, W.R., Barlow, D.J., 1986, Location of ''continuous'' antigenic determinants in the protruding regions of proteins. EMBO J 5, 409-413. Tseng, C.C., Li, N.Z., Yao, C.H., Wang, C.H., 1996, Isolation and adaptation of infectious bronchitis virus in Taiwan from 1993-1995. J Chin Soc Vet Sci 22, 113-120. Wang, C.H., Hsieh, M.C., Chang, P.C., 1996, Isolation, pathogenicity, and H120 protection efficacy of infectious bronchitis viruses isolated in Taiwan. Avian Dis 40, 620-625. Wang, C.H., Huang, Y.C., 2000, Relationship between serotypes and genotypes based on the hypervariable region of the S1 gene of infectious bronchitis virus. Arch Virol 145, 291-300. Wang, C.H., Tsai, C.T., 1996, Genetic grouping for the isolates of avian infectious bronchitis virus in Taiwan. Arch Virol 141, 1677-1688. Wang, L., Junker, D., Collisson, E.W., 1993, Evidence of natural recombination within the S1 gene of infectious bronchitis virus. Virology 192, 710-716. Wang, L., Junker, D., Hock, L., Ebiary, E., Collisson, E.W., 1994, Evolutionary implications of genetic variations in the S1 gene of infectious bronchitis virus. Virus Res 34, 327-338. Wang, X., Khan, M.I., 2000, Molecular characterization of an infectious bronchitis virus strain isolated from an outbreak in vaccinated layers. Avian Dis 44, 1000-1006. Wood, N., Bhattacharya, T., Keele, B.F., Giorgi, E., Liu, M., Gaschen, B., Daniels, M., Ferrari, G., Haynes, B.F., McMichael, A., Shaw, G.M., Hahn, B.H., Korber, B., Seoighe, C., 2009, HIV evolution in early infection: selection pressures, patterns of insertion and deletion, and the impact of APOBEC. PLoS Pathog 5, e1000414. Worobey, M., Holmes, E.C., 1999, Evolutionary aspects of recombination in RNA viruses. J Gen Virol 80 (Pt 10), 2535-2543. Xu, C., Zhao, J., Hu, X., Zhang, G., 2007, Isolation and identification of four infectious bronchitis virus strains in China and analyses of their S1 glycoprotein gene. Vet Microbiol 122, 61-71. Yang, Z., 2007, PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24, 1586-1591. Yang, Z., Bielawski, J.P., 2000, Statistical methods for detecting molecular adaptation. Trends Ecol Evol 15, 496-503. Yang, Z., Nielsen, R., Goldman, N., Pedersen, A.M., 2000, Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics 155, 431-449. Yip, T.T., Nakagawa, Y., Porath, J., 1989, Evaluation of the interaction of peptides with Cu(II), Ni(II), and Zn(II) by high-performance immobilized metal ion affinity chromatography. Anal Biochem 183, 159-171. Yu, L., Jiang, Y., Low, S., Wang, Z., Nam, S.J., Liu, W., Kwangac, J., 2001, Characterization of three infectious bronchitis virus isolates from China associated with proventriculus in vaccinated chickens. Avian Dis 45, 416-424. Zhang, C.Y., Wei, J.F., He, S.H., 2006, Adaptive evolution of the spike gene of SARS coronavirus: changes in positively selected sites in different epidemic groups. BMC Microbiol 6, 88. Zhang, J., Nielsen, R., Yang, Z., 2005, Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Mol Biol Evol 22, 2472-2479.
摘要: 
雞傳染性支氣管炎由冠狀病毒第三群的傳染性支氣管炎病毒所引起,成為危害全世界養雞業的主要禽病之一。在台灣雖然已經廣泛使用進口疫苗株 (大多為美國麻州血清型之H120),但仍無法控制疫情、造成巨大的經濟損失。為了研究台灣傳染性支氣管炎病毒基因之親緣關係,在本研究中我們將台灣本土傳染性支氣管炎病毒株TW2575/98 首次全基因組解序 (GenBank DQ646405),並與其他傳染性支氣管炎病毒的基因序列進行親緣、重組與天擇分析。親緣分析所有非結構與結構基因,發現台灣傳染性支氣管炎病毒除了核殼基因以外,其他基因皆與中國較近、與美國較遠,這也許能夠解釋進口疫苗一直難以控制台灣傳染性支氣管炎病毒爆發之情形;而台灣傳染性支氣管炎病毒之核殼基因親緣分析則與美國較近、與中國較遠,獲得與其他大多數基因親緣不一致的結果。進一步偵測到台灣傳染性支氣管炎病毒核殼基因的5’端,也就是對應到核殼蛋白質氮端功能區域的序列與美國株發生重組,此情形發生在所有測試的台灣傳染性支氣管炎病毒,因此認為遠在台灣祖先的傳染性支氣管炎病毒之核殼基因就已經發生重組。為了更進一步了解台灣傳染性支氣管炎病毒在面臨普遍施用進口疫苗的免疫壓力下,還重組為與美國株近似的核殼基因序列之意義,藉由PAML 4軟體分析,發現核殼蛋白質第64 與123 個胺基酸預測為選擇性壓力造成的正向天擇位點,而這兩個正向天擇位點除了恰位於前述核殼基因重組的區域內,並且根據冠狀病毒核殼蛋白質胺基酸序列的結構排比,亦位司RNA結合的核殼蛋白質氮端功能區域。因此將這兩個正向天擇位點的胺基酸定點突變後進行表面電漿共振分析,結果發現T64P、T64N與T123V突變的核殼蛋白質與RNA結合能力顯著降低,兩個正向天擇位點的突變可能減弱核殼蛋白質與病毒RNA的辨識能力,並進一步間接影響RNA複製與轉錄。換言之,台灣傳染性支氣管炎病毒核殼蛋白質的氮端功能區域透過正向天擇增強RNA結合能力以提高演化適應度以利在台灣長期使用進口疫苗從而產生的免疫壓力之環境下生存。總結本研究,由台灣傳染性支氣管炎病毒核殼基因的親緣不一致與正向天擇的結果,推論以免疫雞隻為宿主的RNA病毒經由5’端核殼基因重組與兩個胺基酸位點之正向天擇,而演化成一個具演化優勢的本土演化族群之發現是首次被提出。

Infectious bronchitis (IB) is currently one of the major diseases affecting the poultry industry around the world; it is caused by the avian infectious bronchitis virus (IBV), a member of the group 3 coronaviruses (CoVs). IBV has caused tremendous economic losses in Taiwan (TW) and has even affected flocks that had been extensively immunized with the Massachusetts (Mass)-serotype (mostly H120) vaccines. To investigate the genomic features of TW IBV and to further infer its phylogeny, we first sequenced the complete genome of the Taiwanese IBV field isolate TW2575/98 (GenBank DQ646405) and compared it to the genomes of other IBV strains and conducted phylogenetic, recombination, and selection analyses. Based on phylogenetic analysis of all of the nonstructural and most of the structural genes, we found that TW IBVs are genetically distinct from the IBVs of the United States of America (US) but similar to those in China (CH). This finding may explain why Mass-serotype vaccines fail to control IBV outbreaks in Taiwan. In contrast, only the nucleocapsid (N) gene of TW IBV showed phylogenetic incongruence. Using recombination programs, we indicated that putative RNA recombination between the TW and US IBVs at the 5' end of the N gene that corresponds to the N-terminal domain (NTD) of the N protein is responsible for this phylogenetic incongruence. Surprisingly, the recombinant N gene was found in all of the TW IBV isolates that were tested, suggesting that a recombination event might have led to the establishment of a founder lineage. To further understand the significance of TW IBVs evolving into a US-like genotype under the immune stress of the Mass-serotype vaccines, we further performed an adaptive evolutionary analysis using the PAML 4 package and identified two positively selected sites at the amino acids 64 and 123 in the putative crossover region of the N protein. According to the structure-based alignment of the CoV N amino acid sequences, these two residues are located in the N-terminal RNA-binding domain of the N protein. We speculated that the positive selection in the NTD of the N protein (N-NTD) of TW IBVs might act to increase its RNA-binding capacity. To evaluate the interaction of the N protein with viral RNA at the positively selected sites using surface plasmon resonance (SPR), we found that the RNA-binding capacity of the N-NTDs of T64P, T64N, and T123V mutants generated by site-directed mutagenesis significantly decreased, indicating impaired viral RNA recognition by these mutants that may further indirectly affect RNA replication and transcription. In other words, our experimental results supported the functional significance of the positively selected sites in RNA-binding capacity, indicating that the N-NTD of TW IBV lineages might been evolved under the adaptive selection through indirectly increased efficiency of RNA replication and transcription for increasing evolutionary fitness, therefore benefiting their survival. In conclusion, the unique phylogenetic incongruence and positively selected sites in the N-NTD of TW IBVs provide insights for the first time into the mechanism by which a recombinant RNA virus with evolutionally selected residues can emerge as a local dominant population in immunized flocks.
URI: http://hdl.handle.net/11455/23141
其他識別: U0005-2701201116413100
Appears in Collections:生命科學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.