Please use this identifier to cite or link to this item:
標題: 綠茶多酚 EGCg 影響人類乳癌細胞株 MCF-7 細胞增生
The anti-proliferative effect of green tea polyphenol (-)-epigallocatechin-3-gallate on human MCF-7 breast cancer cells
作者: 許原彰
Hsu, Yuan-Chang
關鍵字: green tea polyphenol;綠茶多酚;human MCF-7 breast cancer cell;fatty acid synthesis;lipid raft;Ca2+ homeostasis;the MTT assay;western blot;quantitative real time PCR;immune-cellular-fluorescence microscopy;tumor-suppressive gene;pro-apoptotic activity;anti-apoptotic protein;adherens junction proteins;EGFP;laminin receptor;apoptosis;人類乳癌細胞株-MCF-7;脂肪酸;鈣離子細胞溶解;脂質筏;訊息傳遞;細胞存活率;西方墨點法;即時聚合連鎖反應定量儀;免疫螢光染色;細胞凋亡;細胞黏附;基因表現;腫瘤抑制蛋白;促細胞凋亡蛋白;抗凋亡蛋白;綠螢光蛋白;轉質載體;螢光光譜儀;LR接受器
出版社: 生命科學系所
引用: Azuma, T., Koths, K., Flanagan, L., and Kwiatkowski, D. (2000). Gelsolin in complex with phosphatidylinositol 4,5-bisphosphate inhibits caspase-3 and -9 to retard apoptotic progression. J Biol Chem 275, 3761-3766. Bae, J. H., Park, J. W., and Kwon, T. K. (2003). Ruthenium red, inhibitor of mitochondrial Ca2+ uniporter, inhibits curcumin-induced apoptosis via the prevention of intracellular Ca2+ depletion and cytochrome c release. Biochem Biophys Res Commun 303, 1073-1079. Baron, A., Migita, T., Tang, D., and Loda, M. (2004). Fatty acid synthase: a metabolic oncogene in prostate cancer ? J Cell Biochem 91, 47-53. Bassik, M. C., Scorrano, L., Oakes, S. A., Pozzan, T., and Korsmeyer, S. J. (2004). Phosphorylation of BCL-2 regulates ER Ca2+ homeostasis and apoptosis. EMBO J 23, 1207-1216. Berridge, M. J., Bootman, M. D., and Roderick, H. L. (2003). Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4, 517-529. Berridge, M. J., Lipp, P., and Bootman, M. D. (2000). The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1, 11-21. Bharadwaj, S., Hitchcock-DeGregori, S., Thorburn, A., and Prasad, G. L. (2004). N terminus is essential for tropomyosin functions. J Biol Chem 279, 14039-14048. Bharadwaj, S., Thanawala, R., Bon, G., Falcioni, R., and Prasad, G. L. (2005). Resensitization of breast cancer cells to anoikis by Tropomyosin-1: role of Rho kinase-dependent cytoskeleton and adhesion. Oncogene 24, 8291-8303. Bublil, E. M., and Yarden, Y. (2007). The EGF receptor family: spearheading a merger of signaling and therapeutics. Curr Opin Cell Biol 19, 124-134. Butt, M. S., and Sultan, M. T. (2009). Green tea: nature''s defense against malignancies. Crit Rev Food Sci Nutr 49, 463-473. Byun, E. H., Fujimura, Y., Yamada, K., and Tachibana, H. (2010). TLR4 signaling inhibitory pathway induced by green tea polyphenol epigallocatechin-3-gallate through 67-kDa laminin receptor. J Immunol 185, 000-000. Cai, E. P., and Lin, J. K. (2009). Epigallocatechin gallate (EGCG) and rutin suppress the glucotoxicity through activating IRS2 and AMPK Signaling in Rat pancreatic β Cells. J Agric Food Chem 57, 9817-9827. Chen, Y. C., Lin-Shiau, S. Y., and Lin, J. K. (1998). Involvement of reactive oxygen species and caspase 3 activation in arsenite induce apoptosis. J Cell Physiol 177, 324-333. Cheng, T. L., Symons, M., and Jou, T. S. (2004). Regulation of anoikis by Cdc42 and Rac1. Exp Cell Res 295, 497-511. Cho, H. S., and Leahy, D. J. ( 2002). Structure of the extracellular region of HER3 reveals an interdomain tether. Science 297, 1330-1333. Cohen, G. M. (1997). Caspases: the executioners of apoptosis. J Biochem 326, 1-16. Conacci-Sorrell, M., Zhurinsky, J., and Ben-Ze''ev, A. (2002). The cadherin-catenin adhesion system in signaling and cancer. J Clin Invest 109, 987-991. Cooper, J. A. (2002). Actin dynamics: tropomyosin provides stability. Curr Biol 12, 523-525. Coutts, J. C., and Gallagher, J. T. (1995). Receptors for fibroblast growth factors. Immunol Cell Biol 73, 584-589. Demalia, K. A., Wennerberga, K., and Burridgea, K. (2003). Integrin signaling to the actin cytoskeleton. Curr Opin Cell Biol 15, 572-582. Denhardt, D. T. (1996). Signal-transducing protein phosphorylation cascades mediated by Ras/Rho proteins in the mammalian cell : the potential for multiplex signalling. J Biochem 318, 729-747. Dreger, H., Lorenz, M., Kehrer, A., Baumann, G., Stangl, K., and Stangl, V. (2008). Characteristics of catechin- and theaflavin-mediated cardioprotection. Exp Biol Med (Maywood) 233, 427-433. Duchesne, L., Tissot, B., Rudd, T. R., Dell, A., and Fernig, D. G. (2006). N-glycosylation of fibroblast growth factor receptor 1 regulates ligand and heparan sulfate co-receptor binding. J Biol Chem 281, 27178-27189. Fleckenstein, A., Janke, J., Döring, H. J., and Leder, O. (1974). Myocardial fiber necrosis due to intracellular Ca2+ overload- a new principle in cardiac pathophysiology. Recent Adv Stud Cardiac Struct Metab 4, 563-580. Fouquet, S., Lugo-Martínez, V. H., Faussat, A. M., Renaud, F., Cardot, P., Chambaz, J., Raymond, M. P., and Thenet, S. (2004). Early loss of E-cadherin from cell-cell contacts is involved in the onset of anoikis in enterocytes. J Biol Chem 279, 43061-43069. Franzen, B., Linder, S., Uryu, K., Alaiyal, A. A., Hirano, T., Kato, H., and Auer, G. (1996). Expression of tropomyosin isoforms in benign and malignant human breast lesions. Br J Cancer 1996, 909-913. Fuentes-Prior, P., and Salvesen, G. S. (2004). The protein structures that shape caspase activity, specificity, activation and inhibition. J Biochem 384, 201-232. Fujimura, Y., Umeda, D., Yamada, K., and Tachibana, H. (2008). The impact of the 67 kDa laminin receptor on both cell-surface binding and anti-allergic action of tea catechins. Arch Biochem Biophys 476, 133-138. Fujimura, Y., Yamada, K., and Tachibana, H. (2005). A lipid raft-associated 67kDa laminin receptor mediates suppressive effect of epigallocatechin-3-O-gallate on FcepsilonRI expression. Biochem Biophys Res Commun 336, 674-681. Fujita, Y., Krause, G., Scheffner, M., Zechner, D., Leddy, H. E. M., Behrens, J., and Birchmeier, W. (2002). Hakai, a c-Cbl-like protein,ubiquitinates and induces endocytosis of the E-cadherin complex. Nat Cell Biol 4, 222-231. Gall, M. L., Chambard, J. C., Breittmayer, J. P., Grall, D., and Pouysse´gur, J. (2000). The p42/p44 MAP kinase pathway prevents apoptosis induced by anchorage and serum removal. Mol Biol Cell 11, 1103-1112. Garavito-Aguilar, Z. V., Recio-Pinto, E., Corrales, A. V., Zhang, J., Blanck, T. J. J., and Xu, F. (2004). Differential thapsigargin-sensitivities and interaction of Ca2+ stores in human SH-SY5Y neuroblastoma cells. Brain Res 1011, 177-186. Giancotti, F. G. (1996). Signal transduction by the a6b4 integrin: charting the path between laminin binding and nuclear events. J Cell Science 109, 1165-1172. Givant-Horwitz, V., Davidson, B., and Reich, R. (2004). Laminin-induced signaling in tumor cells: the role of the Mr 67,000 laminin receptor. Cancer Res 64, 3572-3579. Gloe, T., Riedmayr, S., Sohn, H. Y., and Pohl, U. (1999). The 67-kDa laminin-binding protein is involved in shear stress-dependent endothelial nitric-oxide synthase expression. J Biol Chem 247, 15996-16002. Golovina, V. A., and Blaustein, M. P. (2000). Unloading and refilling of two classes of spatially resolved endoplasmic reticulum Ca2+ stores in astrocytes. Glia 31, 15-28. Gravdal, K., Halvorsen, O. J., Haukaas, S. A., and Akslen, L. A. (2007). A switch from E-cadherin to N-cadherin expression indicates epithelial to mesenchymal transition and is of strong and independent importance for the progress of prostate cancer. Clin Cancer Res 13, 7003-7011. Gunning, P., Neill, G. O., and Hardeman, E. (2008). Tropomyosin-based regulation of the actin cytoskeleton in time and space. Physiol Rev 88, 1-35. Hastak, K., Gupta, S., Ahmad, N., Agarwal, M. K., Agarwal, M. L., and Mukhtar, H. (2003). Role of p53 and NF-kB in epigallocatechin-3-gallate-induced apoptosis of LNCaP cells. Oncogene 22, 4851-4859. Huang, H. C., Way, T. D., Lin, C. L., and Lin, J. K. (2008). EGCG stabilizes p27kip1 in E2-stimulated MCF-7 cells through down-regulation of the Skp2 protein. Endocrinology 149, 5972-5983. Hughes, J. A., Cooke-Yarborough, C. M., Chadwick, N. C., Schevzov, G., Arbuckle, S. M., Gunning, P., and Weinberger, R. P. (2003). High-molecular-weight tropomyosins localize to the contractile rings of dividing CNS cells but are absent from malignant pediatric and adult CNS tumors. Glia 42, 25-35. Ja¨nicke, R. U., Ng, P., Sprengart, M. L., and Porter, A. G. (1998). Caspase-3 is required for a-fodrin cleavage but dispensable for cleavage of other death substrates in apoptosis. J Biol Chem 273, 15540-15545. Jamieson, K. V., Wu, J., Hubbard, S. R., and Meruelo, D. (2008). Crystal structure of the human laminin receptor precursor. J Biol Chem 238, 3002-3005. Janes, S. M., and Watt, F. M. (2004). Switch from alpha v beta 5 to alpha v beta 6 integrin expression protects squamous cell carcinomas from anoikis. J Cell Biol 166, 419-431. Johnson, G. L., and Lapadat, R. (2002). Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298, 1911-1912. Ju, J., Lu, G., Lambert, J. D., and Yang, C. S. (2007). Inhibition of carcinogenesis by tea constituents. Cancer Biol 17, 395-402. Kamada, S., Kusano, H., Fujita, H., Ohtsu, M., Kuzumak, N., and Tsujimoto, Y. (1998). A cloning method for caspase substrates that uses the yeast two-hybrid system: cloning of the antiapoptotic gene gelsolin. J Biochem 95, 8532-8537. Kavantzas, N., Chatziioannou, A., Yanni, A. E., Tsakayannis, D., Balafoutas, D., Agrogiannis, G., and Perrea, D. (2006). Effect of green tea on angiogenesis and severity of atherosclerosis in cholesterol-fed rabbit Vascul Pharmacol 44, 461-463. Kim, B. C., Kim, H. T., Mamura, M., Ambudkar, I. S., Choi, K. S., and Kim, S. J. (2002). Tumor necrosis factor induces apoptosis in hepatoma cells by increasing Ca2+release from the endoplasmic reticulum and suppressing Bcl-2 expression. J Biol Chem 277, 31381-31389. Kim, D., and Chung, J. (2002). Akt: versatile mediator of cell survival and beyond. J Biochem Mol Biol 35, 106-115. Kim, J., Zhang, X., Rieger-Christ, K. M., Summerhayes, I. C., Wazer, D. E., Paulson, K. E., and Yee, A. S. (2006). Suppression of Wnt signaling by the green tea compound (-)-epigallocatechin 3-gallate (EGCG) in invasive breast cancer cells. J Biol Chem 281, 10865-10875. Kim, M. H., Jung, M. A., Hwang, Y. S., Jeong, M., Kim, S. M., Ahn, S. J., Shin, B. A., Ahn, B. W., and Jung, Y. D. ( 2004). Regulation of urokinase plasminogen activator by epigallocatechin-3-gallate in human fibrosarcoma cells. Eur J Pharmacol 487, 1-6 Koya, R. C., Fujita, H., Shimizu, S., Ohtsu, M., Takimoto, M., Tsujimoto, Y., and Kuzumaki, N. (2000). Gelsolin inhibits apoptosis by blocking mitochondrial membrane potential loss and cytochrome c release. J Biol Chem 275, 15343-15349. Kris-Etherton, P. M., and C.L., K. (2002). Evidence that the antioxidant flavonoids in tea and cocoa are beneficial for cardiovascular health. Curr Opin Lipidol 13, 41-49. Kruman, I., Guo, Q., and Mattson, M. P. (1998). Calcium and reactive oxygen species mediate staurosporine-induced mitochondrial dysfunction and apoptosis in PC12 cells. J Neurosci Res 51, 293-308. Kuhajda, F. P. (2000). Fatty-acid synthase and human cancer: new perspectives on its role in tumor biology. Nutrition 16, 202-208. Kuznetsov, G., Brostromg, M., and Brostrom, C. O. (1993). Role of endoplasmic reticular calcium in oligosaccharide processing of a1-Antitrypsin. J Biol Chem 268, 2001-2008. Lamkanfi, M., D'hondt, K., Walle, L. V., Gurp, M. V., Denecker, G., Demeulemeester, J., Kalai, M., Declercq, W., Saelens, X., and Vandenabeele, P. (2005). A novel caspase-2 complex containing TRAF2 and RIP1. J Biol Chem 280, 6923-6932. Lavrik, I. N., Golks, A., and Krammer, P. H. (2005). Caspases: pharmacological manipulation of cell death. J Clin Invest 115, 2665-2672. Lee, C. H., Poburko, D., Kuo, K. H., Seow, C. Y., and Breemen, C. V. ( 2002). Ca2+ oscillations, gradients, and homeostasis in vascular smooth muscle. Physiol Heart Circ Physiol 282, 1571-1583. Lee, J. S., Lee, M. S., Oh, W. K., and Sul, J. Y. (2009). Fatty acid synthase inhibition by amentoflavone induces apoptosis and antiproliferation in human breast cancer cells. Biol Pharm Bull 32, 1427-1432. Lin, J. K., and Liang, Y. C. (2000). Cancer chemoprevention by tea polyphenols. Proc Natl Sci Counc ROC 24, 1-13. Lin, J. K., Yeh, C. W., Chen, W. J., Chiang, C. T., and Lin-Shiau, S. Y. (2003). Suppression of fatty acid synthase in MCF-7 breast cancer cells by tea and tea polyphenols: a possible mechanism for their hypolipidemic effects. J Pharmacogenomics 3, 267-276. Liou, Y. M., Hsieh, S. R., Tsai, D. C., Chen, J. Y., and Tsai, S. W. (2009). Green tea extract protects rats against myocardial infarction associated with left anterior descending coronary artery ligation. Pflugers Arch 458, 631-642. Liou, Y. M., Kuo, S. C., and Hsieh, S. R. (2008). Differential effects of a green tea-derived polyphenol (-)-epigallocatechin-3-gallate on the acidosis-induced decrease in the Ca2+ sensitivity of cardiac and skeletal muscle. Eur J Physiol 456, 787-800. Liu, X., Zou, H., Slaughter, C., and Wang, X. (1997). DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 89, 175-184. Lodish, H. F., Kong, N., and Wikstrom, L. (1992). Calcium is required for folding of newly made subunits of the asialoglycoprotein receptor within the endoplasmic reticulum. J Biol Chem 267, 12753-12760. Lu, Y. P., Lou, Y. R., Xie, J. G., Peng, Q. Y., Zhou, S., Lin, Y., Shih, W. J., and Conney, A. H. ( 2007). Caffeine and caffeine sodium benzoate have a sunscreen effect, enhance UVB-induced apoptosis,and inhibit UVB-induced skin carcinogenesis in SKH-1 mice. Carcinogenesis 28, 199-206. Maeda-Yamamoto, M., Kawahara, H., Tahara, N., Tsuji, K., Hara, Y., and Isemura, M. (1999). Effects of tea polyphenols on the invasion and matrix metalloproteinases activities of human fibrosarcoma HT1080 cells. J Agric Food Chem 47, 2350-2354. Mahadev, K., Raval, G., Bharadwaj, S., Willingham, M. C., Lange, E. M., Vonderhaar, B., Salomon, D., and Prasad, G. L. (2002). Suppression of the transformed phenotype of breast cancer by tropomyosin-1. Exp Cell Res 279, 40-51. Marsh, B. C. L., Kerr, N. C., Isles, N., Denhardt, D. T., and Wynick, D. (2007). Osteopontin expression and function within the dorsal root ganglion. Neuroreport 18, 153-157. Mazzali, M., Kipari, T., Ophascharoensuk, V., Wesson, J. A., ohnson, R. J., and Hughes, J. (2002). Osteopontin- a molecule for all seasons. QJM 95, 3-13. McConkey, D. J., Choi, W., Marquis, L., Martin, F., Williams, M. B., Shah, J., Svatek, R., Das, A., Adam, L., Kamat, A., et al. (2009). Role of epithelial-to-mesenchymal transition (EMT) in drug sensitivity and metastasis in bladder cancer. Cancer Metastasis Rev 28, 335-344. Me´nard, S. M., Castronovo, V., Tagliabue, E., and Sobel, M. E. (1997). New insights into the metastasis-associated 67 kD laminin receptor. J Cell Biochem 67, 155-165. Medema, J. P., Scaffidi, C., Kischkel, F. C., Shevchenko, A., Mann, M., Krammer, P. H., and Peter, M. E. (1997). FLICE is activated by association with the CD95 death-inducing signaling complex (DISC). EMBO 16, 2794-2804. Michalak, M., Parker, J. M. R., and Opas, M. (2002). Ca2+ signaling and calcium binding chaperones of the endoplasmic reticulum. Cell Calcium 32, 269-278. Mitscher, L. A., Jung, M., Shankel, D., Dou, J. H., and Steele, L. (1997). Chemoprotection: a review of the potential therapeutic antioxidant properties of green tea (Camellia sinensis) and certain of its constituents. Med Res Rev 17, 327-365. Miyazawa, T. (2000). Absorption, metabolism and antioxidative effects of tea catechin in humans. Biofactors 13, 55-59. Mohapatra, S., Chu, B., Zhao, X., and Pledger, W. J. (2005). Accumulation of p53 and reductions in XIAP abundance promote the apoptosis of prostate cancer cells. Cancer Res 65, 7717-7723. Mukhtar, H., and Ahmad, N. (2000). Tea polyphenols: prevention of cancer and optimizing health. Am J Clin Nutr 71, 1698S-1702S. Muzio, M., Chinnaiyan, A. M., Kischkel, F. C., O''Rourke, K., Shevchenko, A., Scaffidi, J. N. C., Bretz, J. D., Zhang, M., Gentz, R., Mann, M., et al. (1996). FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited tp the CD95 (Fas/APO-1) death-inducing signaling complex. Cell 85, 817-827. Nakagawa, K., Ninomiya, M., Okubo, T., Aoi, N., Juneja, L., Kim, M., Yamanaka, K., and Miyazawa, T. (1999). Tea catechin supplementation increases antioxidant capacity and prevents phospholipid hydroperoxidation in plasma of humans. J Agric Food Chem 47, 3967-3973. Oldberg, A., Franzen, A., and Heinegard, D. (1986). Isolation, characterization, and biosynthesiosf a phosphorylated glycoprotein from rat bone. J Biol Chem 83, 8819-8823. Orihuela, C. J., Mahdavi, J., Thornton, J., Mann, B., Wooldridge, K. G., Abouseada, N., Oldfield, N. J., Self, T., Ala''Aldeen, D. A., and Tuomanen, E. I. (2009). Laminin receptor initiates bacterial contact with the blood brain barrier in experimental meningitis models. J Clin Invest 119, 1638-1646. Ornitz, D. M., and Itoh, N. (2001). Fibroblast growth factors. Genome Biol 2, 3001- 3005. Palmer, A. E., Jin, C., Reed, J. C., and Tsien, R. Y. (2004). Bcl-2-mediated alterations in endoplasmic reticulum Ca2+ analyzed with an improved genetically encoded fluorescent sensor. PNAS 101, 17404-17409. Pan, M. H., Lin, C. C., Lin, J. K., and Chen, W. J. (2007). Tea polyphenol (-)-epigallocatechin 3-gallate suppresses heregulin-b1-induced fatty acid synthase expression in human breast cancer cells by inhibiting phosphatidylinositol 3-kinase /Akt and mitogen-activated protein kinase cascade signaling. J Agric Food Chem 55, 5030-5037. Paquay, J. B., Haenen, G. R., Stender, G., Wiseman, S. A., Tijburg, L. B., and Bast, A. (2000). Protection against nitric oxide toxicity by tea. J Agric Food Chem 48, 5768-5772. Patra, S. K., Rizzi, F., Silva, A., Rugina, D. O., and Bettuzzi, S. (2008). Molecular targets of (-)-epigallocatechin-3-gallate (EGCG): specificity and interaction with membrane lipid rafts. J Physiol Pharmacol 59, 217-235. Pawlak, G., and Helfman, D. M. (2002). Post-transcriptional down-regulation of ROCKI/Rho kinase through an MEK-dependent pathway leads to cytoskeleton disruption in Ras-transformed fibroblasts. Mol Biol Cell 13, 336-347. Pawlakm, G., and Helfman, D. M. (2001). Cytoskeletal changes in cell transformation and tumorigenesis. Curr Opin Genet Dev 11, 41-47. Peluso, J. J., Pappalardo, A., and Fernandez, G. (2001). E-cadherin-mediated cell contact prevents apoptosis of spontaneously immortalized granulosa cells by regulating Akt kinase activity. Biol Reprod 64, 1183-1190. Prince, C. W., Oosawa, T., Butler, W. T., Tomanal, M., Bhown, A. S., Bhown, M., and Schrohenloher, R. E. (1987). Isolation, characterization, and biosynthesiosf a phosphorylated glycoprotein from rat bone. J Biol Chem 262, 2900-2907. Puig, T., Turrado, C., Benhamú, B., Aguilar, H., Relat, J., Ortega-Gutiérrez, S., Casals, G., Marrero, P. F., Urruticoechea, A., Haro, D., et al. (2009). Novel inhibitors of fatty acid synthase with anticancer activity. Clin Cancer Res 15, 7608-7615. Qanungo, S., Das, M., Haldar, S., and Basu, A. (2005). Epigallocatechin-3-gallate induces mitochondrial membrane depolarization and caspase-dependent apoptosis in pancreatic cancer cells. Carcinogenesis 26, 958-967. Raval, G. N., Bharadwaj, S., Levine, E. A., Willingham, M. C., Geary, R. L., and Prasad, G. L. (2003). Loss of expression of tropomyosin-1, a novel class II tumor suppressor that induces anoikis, in primary breast tumors. Oncogene 22, 6194-6203. Ritchie, M. D., Hahn, L. W., Roodi, N., Dupont, W. D., Parl, F. F., and Moore, J. H. (2001). Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am J Hum Genet 69:, 138-147. Rithidech, K. N., Honikel, L., Milazzo, M., Madigan, D., Troxell, R., and Krupp, L. B. (2009). Protein expression profiles in pediatric multiple sclerosis: potential biomarkers. Mult Scler 15, 455-464. Robinson, C. J., and Stringer, S. E. (2001). The splice variants of vascular endothelial growth factor (VEGF) and their receptors. J Cell Sci 114, 853-865. Robinson, D. R., Wu, Y. M., and Lin, S. F. (2000). The protein tyrosine kinase family of the human genome. Oncogene 19, 5548-5557. Sahai, E., Olson, M. F., and C.J., M. (2001). Cross-talk between Ras and Rho signalling pathways in transformation favours proliferation and increased motility. EMBO 20, 755-766. Sazuka, M., Murakamia, S., Isemura, M., Satoh, K., and Nukiwa, T. (1995). Inhibitory effects of green tea infusion on in vitro invasion and in vivo metastasis of mouse lung carcinoma cells. Cancer Lett 98, 27-31. Scatena, M., Liaw, L., and Giachelli, C. M. (2007). Osteopontin : a multifunctional molecule regulating chronic inflammation and vascular disease. Arterioscler Thromb Vasc Biol 27, 2302-2309. Shankar, J., Satoru, K., and Partha, P. B. (2006). Genistein represses telomerase activity via both transcriptional and posttranslational mechanisms in human prostate cancer cells. Cancer Res 66, 2107-2115. Si, M. L., Zhu, S., Wu, H., Lu, Z., Wu, F., and Mo, Y. Y. (2007). miR-21-mediated tumor growth. Oncogene 26, 2799-2803. Simpson, C. D., Anyiwe, K., and Schimmer, A. D. (2008). Anoikis resistance and tumor metastasis. cancer Leet 272, 177-185. Singhal, H., Bautista, D., Tonkin, K., Tuck, A., Chambers, A. H., and Harris, J. (1997). Elevated plasma osteopontin in metastatic breast cancer associated with increased tumor burden and decreased survival. Clin Cancer Res 3, 605-611. Song, G., Ouyang, G., and Bao, S. (2005). The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med 9, 59-71. Song, Q., Lees-Miller, S. P., Kumar, S., Zhang, N., Chan, D. W., Smith, G. C. M., Jackson, S. P., Alnemri, E. S., Litwack, G., Khanna, K. K., and Lavin, M. F. (1996). DNA-dependent protein kinase catalytic subunit: a target for an ICE-like protease in apoptosis. EMBO 15, 3238-3246. spinardi, L., and witke, W. (2007). Gelsolin and diseases. Calcium Signalling and Disease, 55-69. Sprick, M. R., Rieser, E., Stahl, H., Grosse-Wilde, A., Weigand, M. A., and Walczak, H. (2002). Caspase-10 is recruited to and activated at the native TRAIL and CD95 death-inducing signalling complexes in a FADD -dependent manner but can not functionally substitute caspase-8. EMBO 21, 4520-4530. Steinhusen, U., Weiske, J., Badocki, V., Tauber, R., Bommert, K., and Huber, O. (2001). Cleavage and shedding of E-cadherin after induction of apoptosis. J Biol Chem 276, 4972-4980. Stuart, E. C., Scandlyn, M. J., and Rosengren, R. J. ( 2006). Role of epigallocatechin gallate (EGCG) in the treatment of breast and prostate cancer. Life Sci 79, 2329-2336. Tachibana, H., Koga, K., Fujimura, Y., and Yamada, K. (2004). A receptor for green tea polyphenol EGCG. Nature Structral & Molecular Biology 11, 380-381. Tagliarino, C., Pink, J. J., Dubyak, G. R., Nieminen, A. L., and Boothman, D. A. (2001). Calcium is a key signaling molecule in beta-lapachone-mediated cell death. J Biol Chem 276, 19150-19159. Takahashi, K., Nakajima, E., and Suzuki, K. (2006). Involvement of protein phosphatase 2A in the maintenance of E-cadherin-mediated cell-cell adhesion through recruitment of IQGAP1. J Cell Physiol 206, 814-820. Tanaka, M., Narumi, K., Isemura, M., Abe, M., Sato, Y., Abe, T., Saijo, Y., Nukiwa, T., and Satoh, K. (2000). Expression of the 37-kDa laminin binding protein in murine lung tumor cell correlates with tumor angiogenesis. Cancer Lett 153, 161-168. Thepparit, C., and Smith, D. R. (2004). Serotype-specific entry of dengue virus into liver cells: identification of the 37-kilodalton/67-kilodalton high-affinity laminin receptor as a dengue virus serotype 1 receptor. J Virol 78, 12647-12656. Thiébaut, A. C. M., Kipnis, V., Chang, S. C., Subar, A. F., Thompson, F. E., Rosenberg, P. S., Hollenbeck, A. R., Leitzmann, M., and Schatzkin, A. ( 2007). Dietary fat and postmenopausal invasive breast cancer in the national institutes of health-AARP diet and health study cohort. J Natl Cancer Inst 99, 451-462. Umeda, D., Yano, S., Yamada, K., and Tachibana, H. (2008). Green tea polyphenol epigallocatechin-3-gallate signaling pathway through 67-kDa laminin receptor. J Biol Chem 283, 3050-3058. Valentijn, A. J., Metcalfe, A. D., Kott, J., Streuli, C. H., and Gilmore, A. P. (2003). Spatial and temporal changes in Bax subcellular localization during anoikis. J Cell Biol 162, 599-612. Valentijn, A. J., Zouq, N., and Gilmore, A. P. (2004). Anoikis. Biochemical Society Transactions 32, 421-425. Wang-Rodriguez, J., Urquidi, V., Rivard, A., and Goodison, S. (2003). Elevated osteopontin and thrombospondin expression identifies malignant human breast carcinoma but is not indicative of metastatic status. Breast Cancer Res 5, 136-143. Wang, K. S., Kuhn, R. J., Strauss, E. G., Ou, S., and Strauss, J. H. (1992). High-affinity laminin receptor is a receptor for sindbis virus in mammalian cells. J Virol 66, 4992-5001. Wang, X., Hao, M. W., Lin, K. D., Ren, J. H., and Zhang, H. Z. (2009). Apoptosis induction effects of EGCG in laryngeal squamous cell carcinoma cells through telomerase repression. Arch Pharm Res 32, 1263-1269. Weber, G. F. (2001). The metastasis gene osteopontin: a candidate target for cancer therapy. Biochim Biophys Acta 1552, 61-85. Whitby, F. G., and Phillips, G. N. (2000). Crystal structure of tropomyosin at 7 A°ngstroms resolution. Proteins 38, 49-59. Wiederin, J., Rozek, W., Duan, F., and Ciborowski, P. (2009). Biomarkers of HIV-1 associated dementia: proteomic investigation of sera. Proteome Sci 7. Wijnhoven, B. P., Dinjen, W. N., and Pignatelli, M. (2000). E-cadherin-catenin cell-cell adhesion complex and human cancer. Br J Surg 87, 992-1005. Yamashiro-Matsumura, S., and Matsumura, F. (1998). Characterization of 83- kilodalton nonmuscle caldesmon from cultured rat cells: stimulation of actin binding of nonmuscle tropomyosin and periodic localization along microfilaments like tropomyosin. J Cell Biol 106, 1973-1983. Yang, C. S., Liao, J., Yang, G. Y., and Lu, G. (2005). Inhibition of lung tumorigenesis by tea. Exp Lung Res 31, 135-144. Yang, C. S., Maliakal, P., and Meng, X. (2002). Inhibition of carcinogenesis by tea. Annu Rev Pharmacol Toxicol 42, 25-54. Yin, H. L., Kwiatkowski, D. J., Mole, J. E., and Cole, F. S. (1984). Structure and biosynthesis of cytoplasmic and secreted variants of gelsolin. J Biol Chem 259, 5271-5276. Yin, H. L., and Stossel, T. P. (1979). Control of cytoplasmic actin gel-sol transformation by gelsolin, a calcium-dependent regulatory protein. Nature 281, 583 - 586 Yin, S. T., Tang, M. L., Deng, H. M., Xing, T. R., Chen, J. T., Wang, H. L., and Ruan, D. Y. (2009). Epigallocatechin-3-gallate induced primary cultures of rat hippocampal neurons death linked to calcium overload and oxidative stress. Naunyn Schmiedebergs Arch Pharmacol 379, 551-564. Zemel, M. B. (2002). Regulation of adiposity and obesity risk by dietary calcium: mechanisms and implications. J Am Coll Nutr 21, 146-151. Zemel, M. B. (2003). Mechanisms of dairy modulation of adiposity. J Nutr 133, 252-256. Zugasti, O., Rul, W., Roux, P., Peyssonnaux, C., Eychene, A., Franke, T. F., Fort, P., and Hibner, U. (2001). Raf-MEK-Erk cascade in anoikis is controlled by Rac1 and Cdc42 via Akt. Mol Cell Biol, 6706-6717. Zwick, E., Bange, J., and Ullrich, A. (2001). Receptor tyrosine kinase signalling as a target for cancer intervention strategies. Endocr Relat Cancer 8, 161-173.
研究報告指出:綠茶多酚具有抑制人類乳癌細胞生長的能力。以人類乳癌細胞株-MCF-7而言,綠茶多酚可分別經由影響乳癌細胞合成脂肪酸的能力、降低胞內鈣離子、以及增加細胞溶解等作用路徑來抑制乳癌細胞的生長能力。另外,研究報告顯示:綠茶多酚也可以經由改變細胞膜上組成脂肪分子移動所造成的脂質筏,而影響許多位在細胞膜上的蛋白接受體的訊息傳遞,因此可抑制許多癌細胞的生長能力。本論文旨在“進一步探討綠茶多酚是否可經由活化細胞膜上的訊息傳遞,而影響細胞內鈣離子濃度的變化以及其他可能的作用機轉”,而產生有效的抑制人類乳癌細胞株-MCF-7細胞的生長。首先,檢視以及量化綠茶多酚影響 MCF-7細胞的存活率;再藉由西方墨點法、即時聚合連鎖反應定量儀、以及免疫螢光染色等方法來“偵測綠茶多酚影響癌細胞內調控細胞凋亡以及細胞黏附相關性蛋白基因表現的變化”。結果發現:綠茶多酚可具有劑量與時間依賴性的抑制 MCF-7細胞的存活率、並會隨著作用濃度提高而活化腫瘤抑制蛋白-Tropomyosin-1基因與蛋白的表現量、增加活化型20kDa 促細胞凋亡蛋白-Caspase-3的表現量、降低抗凋亡蛋白-Gelsolin表現量、以及細胞黏附相關性蛋白 E-cadherin/β-catenin 的表現,並改變其在細胞內的分佈位置;最後也可抑制 MCF-7分泌乳癌細胞標記蛋白 OPN 的能力。另外,利用帶有已建構有綠螢光蛋白基因的轉殖載體轉染 MCF-7細胞,再藉由螢光光譜儀來探討綠茶多酚可能作用在細胞膜上的蛋白接受體的訊息傳遞。結果發現:逐漸提高綠茶多酚劑量會造成螢光強度呈現遞減的結果,而綠茶多酚抑制螢光蛋白活性的能力在加入不同濃度(0.03%-0.1%)Triton X-100破壞細胞膜性構造後會有不同程度的恢復。此外,先破壞細胞膜性構造的實驗中,也發現:綠茶多酚影響綠螢光強度變化反應的敏感性有降低的變化。這些結果暗示:綠茶多酚似乎可經由細胞膜的路徑進而影響細胞內的反應活性。最後,利用抑制 TPK 與 AKT 訊息傳遞的藥物以及 LR 接受器的抗體,來深入探討綠茶多酚如何經由這些訊息傳遞路徑來調控細胞內鈣離子濃度的變化。實驗結果顯示:綠茶多酚可以經由 AKT 與 LR 接受器等作用路徑,來影響細胞內鈣離子濃度的變化。綜合以上實驗結果:綠茶多酚可以經由細胞膜的路徑進入到細胞內,而造成細胞內調控細胞凋亡與細胞黏附相關性蛋白基因的表現,並藉由 AKT 與 LR 接受器的作用路徑共同影響到細胞內鈣離子濃度變化,最後誘導乳癌細胞走向凋亡的路徑。

It has been reported that green tea polyphenol (e.g. (-)-epigallocatechin-3-gallate, EGCg)can inhibit human MCF-7 breast cancer cell growth via the signal transduction pathways to modify the activity of fatty acid synthesis. In addition, EGCg has been shown to cause inhibition of tumor cell growth by altering the lipid compositions on cell membranes such as to induce the lipid raft associated with membrane receptors including human estrogen receptor (HER)and epidermal growth factor receptor(EGFR)in many cancer cells. The main goal of this study was to investigate whether EGCg can inhibit human MCF-7 breast cancer cell proliferation via the membrane-evoked signaling pathway to modulate cytoplasmic Ca2+ homeostasis. Using the MTT assay, EGCg was found to attenuate mitochondria-dependent cell viability of MCF-7 cells. Analyses by using western blot, quantitative real time PCR、and immune-cellular-fluorescence microscopy revealed the chemo-protection of EGCg on inhibition of MCF-7 breast cancer cell proliferation. The anti-tumor effects of EGCg included (1) re-activation of tumor-suppressive gene, tropomyosin-1, (2) increases of pro-apoptotic activity of 20 kD caspase-3, (3) decreases of anti-apoptotic protein-gelsolin gene expression, (4) modulation of gene expression and cellular distribution of adherens junction proteins of E-cadherin,β-catenin, and (5) attenuating extracellular secretion of breast cancer cell marker protein, osteopontin. To examine further whether EGCg acts by the membrane-associated signaling pathway to modulate cytoplasmic Ca2+ homeostasis, we first forced EGFP expression in MCF-7 cell and measured the EGCg-dependent decrease in the EGFP fluorescence. The observation that the EGCg-induced decrease of fluorescence intensity was recovered after cell membrane removal indicates that membrane portion is required for the action of EGCg. Since a multitude of intracellular Ca2+ signaling is sensitive to membrane activation, the dosage effect of EGCg was also determined on changes in intracellular Ca2+. The specific receptor on the membrane was identified by applying a specific antibody to laminin receptor (LR) and genistein, an inhibitor of TPK and AKT receptors. Results obtained demonstrated that EGCg can act through the LR and Akt signaling pathway to influence the intracellular Ca2+. Taken together, EGCg acts by modifying the membrane signal transduction to alter intracellular Ca2+ levels, which might promote apoptosis and attenuate MCF-7 cell viability.
其他識別: U0005-2707201014465300
Appears in Collections:生命科學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.