Please use this identifier to cite or link to this item:
標題: ABPs與肌動蛋白絲聚合及去聚合反應在人類WJCs進行脂肪分化之角色
Roles of actin-binding proteins associated with actin filament polymerization/depolymerization in the differentiation of human Wharton''s jelly cells into adipocytes.
作者: 彭康維
Peng, Kang-Wei
關鍵字: adipogenesis;脂肪細胞分化;actin cytoskeleton;actin-binding proteins;formin-2;profilin;tropomyosin-1;caldesmon;gelsolin;肌動蛋白細胞骨架;肌動蛋白鍵結蛋白;formin-2;profilin;tropomyosin-1;caldesmon;gelsolin
出版社: 生命科學系所
引用: Avram, M. M., Avram, A. S., and James, W. D. (2007). Subcutaneous fat in normal and diseased states 3. Adipogenesis: from stem cell to fat cell. J Am Acad Dermatol 56, 472-492. Azuma, T., Koths, K., Flanagan, L., and Kwiatkowski, D. (2000). Gelsolin in complex with phosphatidylinositol 4,5-bisphosphate inhibits caspase-3 and -9 to retard apoptotic progression. J Biol Chem 275, 3761-3766. Benado, A., Nasagi-Atiya, Y., and Sagi-Eisenberg, R. (2009). Protein trafficking in immune cells. Immunobiology 214, 507-525. Bharadwaj, S., and Prasad, G. L. (2002). Tropomyosin-1, a novel suppressor of cellular transformation is downregulated by promoter methylation in cancer cells. Cancer Lett 183, 205-213. Birbach, A. (2008). Profilin, a multi-modal regulator of neuronal plasticity. Bioessays 30, 994-1002. Bola, B., and Allan, V. (2009). How and why does the endoplasmic reticulum move? Biochem Soc Trans 37, 961-965. Bouchard, M., Pare, C., Dutasta, J. P., Chauvet, J. P., Gicquaud, C., and Auger, M. (1998). Interaction between G-actin and various types of liposomes: A 19F, 31P, and 2H nuclear magnetic resonance study. Biochemistry 37, 3149-3155. Braverman, R. H., Cooper, H. L., Lee, H. S., and Prasad, G. L. (1996). Anti-oncogenic effects of tropomyosin: isoform specificity and importance of protein coding sequences. Oncogene 13, 537-545. Can, A., and Karahuseyinoglu, S. (2007). Concise review: human umbilical cord stroma with regard to the source of fetus-derived stem cells. Stem Cells 25, 2886-2895. Chan, D. C., and Leder, P. (1996). Genetic evidence that formins function within the nucleus. J Biol Chem 271, 23472-23477. Chesarone, M. A., DuPage, A. G., and Goode, B. L. (2010). Unleashing formins to remodel the actin and microtubule cytoskeletons. Nat Rev Mol Cell Biol 11, 62-74. Conconi, M. T., Burra, P., Di Liddo, R., Calore, C., Turetta, M., Bellini, S., Bo, P., Nussdorfer, G. G., and Parnigotto, P. P. (2006). CD105(+) cells from Wharton''s jelly show in vitro and in vivo myogenic differentiative potential. Int J Mol Med 18, 1089-1096. Corsini, E., Zancanella, O., Lucchi, L., Viviani, B., Marinovich, M., and Galli, C. L. (2007). Role of SP-1 in SDS-induced adipose differentiation related protein synthesis in human keratinocytes. Gene Regul Syst Bio 1, 207-215. David, V., Martin, A., Lafage-Proust, M. H., Malaval, L., Peyroche, S., Jones, D. B., Vico, L., and Guignandon, A. (2007). Mechanical loading down-regulates peroxisome proliferator-activated receptor gamma in bone marrow stromal cells and favors osteoblastogenesis at the expense of adipogenesis. Endocrinology 148, 2553-2562. de Sousa Abreu, R., Penalva, L. O., Marcotte, E. M., and Vogel, C. (2009). Global signatures of protein and mRNA expression levels. Mol Biosyst 5, 1512-1526. DeWard, A. D., and Alberts, A. S. (2008). Microtubule stabilization: formins assert their independence. Curr Biol 18, R605-608. Ehrenberg, M., and McGrath, J. L. (2004). Actin motility: staying on track takes a little more effort. Curr Biol 14, R931-932. Eisenmann, K. M., Harris, E. S., Kitchen, S. M., Holman, H. A., Higgs, H. N., and Alberts, A. S. (2007). Dia-interacting protein modulates formin-mediated actin assembly at the cell cortex. Curr Biol 17, 579-591. Eves, R., Webb, B. A., Zhou, S., and Mak, A. S. (2006). Caldesmon is an integral component of podosomes in smooth muscle cells. J Cell Sci 119, 1691-1702. Feve, B. (2005). Adipogenesis: cellular and molecular aspects. Best Pract Res Clin Endocrinol Metab 19, 483-499. Fong, T. H., Wu, C. H., Liao, E. W., Chang, C. Y., Pai, M. H., Chiou, R. J., and Lee, A. W. (2001). Association of globular beta-actin with intracellular lipid droplets in rat adrenocortical cells and adipocytes. Biochem Biophys Res Commun 289, 1168-1174. Gray, D. S., Liu, W. F., Shen, C. J., Bhadriraju, K., Nelson, C. M., and Chen, C. S. (2008). Engineering amount of cell-cell contact demonstrates biphasic proliferative regulation through RhoA and the actin cytoskeleton. Exp Cell Res 314, 2846-2854. Gregoire, F. M., Smas, C. M., and Sul, H. S. (1998). Understanding adipocyte differentiation. Physiol Rev 78, 783-809. Grynkiewicz, G., Poenie, M., and Tsien, R. Y. (1985). A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260, 3440-3450. Gunning, P., O''Neill, G., and Hardeman, E. (2008). Tropomyosin-based regulation of the actin cytoskeleton in time and space. Physiol Rev 88, 1-35. Gunning, P. W., Schevzov, G., Kee, A. J., and Hardeman, E. C. (2005). Tropomyosin isoforms: divining rods for actin cytoskeleton function. Trends Cell Biol 15, 333-341. Hai, C. M., and Gu, Z. (2006). Caldesmon phosphorylation in actin cytoskeletal remodeling. Eur J Cell Biol 85, 305-309. Ho, J. H., Ma, W. H., Su, Y., Tseng, K. C., Kuo, T. K., and Lee, O. K. (2010). Thymosin beta-4 directs cell fate determination of human mesenchymal stem cells through biophysical effects. J Orthop Res 28, 131-138. Hong, S. H., Gang, E. J., Jeong, J. A., Ahn, C., Hwang, S. H., Yang, I. H., Park, H. K., Han, H., and Kim, H. (2005). In vitro differentiation of human umbilical cord blood-derived mesenchymal stem cells into hepatocyte-like cells. Biochem Biophys Res Commun 330, 1153-1161. Hosoya, N., Hosoya, H., Yamashiro, S., Mohri, H., and Matsumura, F. (1993). Localization of caldesmon and its dephosphorylation during cell division. J Cell Biol 121, 1075-1082. Houle, F., Rousseau, S., Morrice, N., Luc, M., Mongrain, S., Turner, C. E., Tanaka, S., Moreau, P., and Huot, J. (2003). Extracellular signal-regulated kinase mediates phosphorylation of tropomyosin-1 to promote cytoskeleton remodeling in response to oxidative stress: impact on membrane blebbing. Mol Biol Cell 14, 1418-1432. Jones, B. H., Kim, J. H., Zemel, M. B., Woychik, R. P., Michaud, E. J., Wilkison, W. O., and Moustaid, N. (1996). Upregulation of adipocyte metabolism by agouti protein: possible paracrine actions in yellow mouse obesity. Am J Physiol 270, E192-196. Karahuseyinoglu, S., Cinar, O., Kilic, E., Kara, F., Akay, G. G., Demiralp, D. O., Tukun, A., Uckan, D., and Can, A. (2007). Biology of stem cells in human umbilical cord stroma: in situ and in vitro surveys. Stem Cells 25, 319-331. Karahuseyinoglu, S., Kocaefe, C., Balci, D., Erdemli, E., and Can, A. (2008). Functional structure of adipocytes differentiated from human umbilical cord stroma-derived stem cells. Stem Cells 26, 682-691. Kawaji, A., Ohnaka, Y., Osada, S., Nishizuka, M., and Imagawa, M. (2010). Gelsolin, an actin regulatory protein, is required for differentiation of mouse 3T3-L1 cells into adipocytes. Biol Pharm Bull 33, 773-779. Koya, R. C., Fujita, H., Shimizu, S., Ohtsu, M., Takimoto, M., Tsujimoto, Y., and Kuzumaki, N. (2000). Gelsolin inhibits apoptosis by blocking mitochondrial membrane potential loss and cytochrome c release. J Biol Chem 275, 15343-15349. Lange, K., and Brandt, U. (1996). Calcium storage and release properties of F-actin: evidence for the involvement of F-actin in cellular calcium signaling. FEBS Lett 395, 137-142. Leader, B., and Leder, P. (2000). Formin-2, a novel formin homology protein of the cappuccino subfamily, is highly expressed in the developing and adult central nervous system. Mech Dev 93, 221-231. Leader, B., Lim, H., Carabatsos, M. J., Harrington, A., Ecsedy, J., Pellman, D., Maas, R., and Leder, P. (2002). Formin-2, polyploidy, hypofertility and positioning of the meiotic spindle in mouse oocytes. Nat Cell Biol 4, 921-928. Lederer, M., Jockusch, B. M., and Rothkegel, M. (2005). Profilin regulates the activity of p42POP, a novel Myb-related transcription factor. J Cell Sci 118, 331-341. Lee, S. H., and Dominguez, R. (2010). Regulation of actin cytoskeleton dynamics in cells. Mol Cells 29, 311-325. Li, Y., Lin, J. L., Reiter, R. S., Daniels, K., Soll, D. R., and Lin, J. J. (2004). Caldesmon mutant defective in Ca(2+)-calmodulin binding interferes with assembly of stress fibers and affects cell morphology, growth and motility. J Cell Sci 117, 3593-3604. Mahadev, K., Raval, G., Bharadwaj, S., Willingham, M. C., Lange, E. M., Vonderhaar, B., Salomon, D., and Prasad, G. L. (2002). Suppression of the transformed phenotype of breast cancer by tropomyosin-1. Exp Cell Res 279, 40-51. Margetic, S., Gazzola, C., Pegg, G. G., and Hill, R. A. (2002). Leptin: a review of its peripheral actions and interactions. Int J Obes Relat Metab Disord 26, 1407-1433. Mayanagi, T., Morita, T., Hayashi, K., Fukumoto, K., and Sobue, K. (2008). Glucocorticoid receptor-mediated expression of caldesmon regulates cell migration via the reorganization of the actin cytoskeleton. J Biol Chem 283, 31183-31196. McBeath, R., Pirone, D. M., Nelson, C. M., Bhadriraju, K., and Chen, C. S. (2004). Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell 6, 483-495. Meirelles Lda, S., Fontes, A. M., Covas, D. T., and Caplan, A. I. (2009). Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev 20, 419-427. Meyers, V. E., Zayzafoon, M., Douglas, J. T., and McDonald, J. M. (2005). RhoA and cytoskeletal disruption mediate reduced osteoblastogenesis and enhanced adipogenesis of human mesenchymal stem cells in modeled microgravity. J Bone Miner Res 20, 1858-1866. Morita, T., Mayanagi, T., Yoshio, T., and Sobue, K. (2007). Changes in the balance between caldesmon regulated by p21-activated kinases and the Arp2/3 complex govern podosome formation. J Biol Chem 282, 8454-8463. Morrison, S. J., and Kimble, J. (2006). Asymmetric and symmetric stem-cell divisions in development and cancer. Nature 441, 1068-1074. Mukhopadhyay, U. K., Eves, R., Jia, L., Mooney, P., and Mak, A. S. (2009). p53 suppresses Src-induced podosome and rosette formation and cellular invasiveness through the upregulation of caldesmon. Mol Cell Biol 29, 3088-3098. Nishimura, K., Ting, H. J., Harada, Y., Tokizane, T., Nonomura, N., Kang, H. Y., Chang, H. C., Yeh, S., Miyamoto, H., Shin, M., et al. (2003). Modulation of androgen receptor transactivation by gelsolin: a newly identified androgen receptor coregulator. Cancer Res 63, 4888-4894. Ntambi, J. M., and Young-Cheul, K. (2000). Adipocyte differentiation and gene expression. J Nutr 130, 3122S-3126S. O''Neill, G. M., Stehn, J., and Gunning, P. W. (2008). Tropomyosins as interpreters of the signalling environment to regulate the local cytoskeleton. Semin Cancer Biol 18, 35-44. Ohtsu, M., Sakai, N., Fujita, H., Kashiwagi, M., Gasa, S., Shimizu, S., Eguchi, Y., Tsujimoto, Y., Sakiyama, Y., Kobayashi, K., and Kuzumaki, N. (1997). Inhibition of apoptosis by the actin-regulatory protein gelsolin. EMBO J 16, 4650-4656. Pollard, T. D., and Borisy, G. G. (2003). Cellular motility driven by assembly and disassembly of actin filaments. Cell 112, 453-465. Pollard, T. D., and Cooper, J. A. (2009). Actin, a central player in cell shape and movement. Science 326, 1208-1212. Posern, G., Miralles, F., Guettler, S., and Treisman, R. (2004). Mutant actins that stabilise F-actin use distinct mechanisms to activate the SRF coactivator MAL. EMBO J 23, 3973-3983. Quinlan, M. E., Hilgert, S., Bedrossian, A., Mullins, R. D., and Kerkhoff, E. (2007). Regulatory interactions between two actin nucleators, Spire and Cappuccino. J Cell Biol 179, 117-128. Ruegg, J., Holsboer, F., Turck, C., and Rein, T. (2004). Cofilin 1 is revealed as an inhibitor of glucocorticoid receptor by analysis of hormone-resistant cells. Mol Cell Biol 24, 9371-9382. Sano, K., Maeda, K., Oda, T., and Maeda, Y. (2000). The effect of single residue substitutions of serine-283 on the strength of head-to-tail interaction and actin binding properties of rabbit skeletal muscle alpha-tropomyosin. J Biochem 127, 1095-1102. Schratt, G., Philippar, U., Berger, J., Schwarz, H., Heidenreich, O., and Nordheim, A. (2002). Serum response factor is crucial for actin cytoskeletal organization and focal adhesion assembly in embryonic stem cells. J Cell Biol 156, 737-750. Schuh, M., and Ellenberg, J. (2008). A new model for asymmetric spindle positioning in mouse oocytes. Curr Biol 18, 1986-1992. Schumacher, N., Borawski, J. M., Leberfinger, C. B., Gessler, M., and Kerkhoff, E. (2004). Overlapping expression pattern of the actin organizers Spir-1 and formin-2 in the developing mouse nervous system and the adult brain. Gene Expr Patterns 4, 249-255. Shieh, D. B., Li, R. Y., Liao, J. M., Chen, G. D., and Liou, Y. M. (2010). Effects of genistein on beta-catenin signaling and subcellular distribution of actin-binding proteins in human umbilical CD105-positive stromal cells. J Cell Physiol 223, 423-434. Silacci, P., Mazzolai, L., Gauci, C., Stergiopulos, N., Yin, H. L., and Hayoz, D. (2004). Gelsolin superfamily proteins: key regulators of cellular functions. Cell Mol Life Sci 61, 2614-2623. Skare, P., Kreivi, J. P., Bergstrom, A., and Karlsson, R. (2003). Profilin I colocalizes with speckles and Cajal bodies: a possible role in pre-mRNA splicing. Exp Cell Res 286, 12-21. Skau, C. T., Neidt, E. M., and Kovar, D. R. (2009). Role of tropomyosin in formin-mediated contractile ring assembly in fission yeast. Mol Biol Cell 20, 2160-2173. Spiegelman, B. M., and Farmer, S. R. (1982). Decreases in tubulin and actin gene expression prior to morphological differentiation of 3T3 adipocytes. Cell 29, 53-60. Stuven, T., Hartmann, E., and Gorlich, D. (2003). Exportin 6: a novel nuclear export receptor that is specific for profilin.actin complexes. EMBO J 22, 5928-5940. Sun, H. Q., Yamamoto, M., Mejillano, M., and Yin, H. L. (1999). Gelsolin, a multifunctional actin regulatory protein. J Biol Chem 274, 33179-33182. Tanabe, Y., Koga, M., Saito, M., Matsunaga, Y., and Nakayama, K. (2004). Inhibition of adipocyte differentiation by mechanical stretching through ERK-mediated downregulation of PPARgamma2. J Cell Sci 117, 3605-3614. Tanaka, H., Shirkoohi, R., Nakagawa, K., Qiao, H., Fujita, H., Okada, F., Hamada, J., Kuzumaki, S., Takimoto, M., and Kuzumaki, N. (2006). siRNA gelsolin knockdown induces epithelial-mesenchymal transition with a cadherin switch in human mammary epithelial cells. Int J Cancer 118, 1680-1691. Troyer, D. L., and Weiss, M. L. (2008). Wharton''s jelly-derived cells are a primitive stromal cell population. Stem Cells 26, 591-599. Vartiainen, M. K., Guettler, S., Larijani, B., and Treisman, R. (2007). Nuclear actin regulates dynamic subcellular localization and activity of the SRF cofactor MAL. Science 316, 1749-1752. Wang, H. S., Hung, S. C., Peng, S. T., Huang, C. C., Wei, H. M., Guo, Y. J., Fu, Y. S., Lai, M. C., and Chen, C. C. (2004). Mesenchymal stem cells in the Wharton''s jelly of the human umbilical cord. Stem Cells 22, 1330-1337. Warren, K. S., Lin, J. L., Wamboldt, D. D., and Lin, J. J. (1994). Overexpression of human fibroblast caldesmon fragment containing actin-, Ca++/calmodulin-, and tropomyosin-binding domains stabilizes endogenous tropomyosin and microfilaments. J Cell Biol 125, 359-368. Wen, D., Corina, K., Chow, E. P., Miller, S., Janmey, P. A., and Pepinsky, R. B. (1996). The plasma and cytoplasmic forms of human gelsolin differ in disulfide structure. Biochemistry 35, 9700-9709. Witke, W. (2004). The role of profilin complexes in cell motility and other cellular processes. Trends Cell Biol 14, 461-469. Xu, C., and Xu, G. H. (2009). [Glucocorticoids, adipose metabolism and insulin resistance]. Sheng Li Ke Xue Jin Zhan 40, 19-23. Yarmola, E. G., and Bubb, M. R. (2009). How depolymerization can promote polymerization: the case of actin and profilin. Bioessays 31, 1150-1160. Yoshio, T., Morita, T., Kimura, Y., Tsujii, M., Hayashi, N., and Sobue, K. (2007). Caldesmon suppresses cancer cell invasion by regulating podosome/invadopodium formation. FEBS Lett 581, 3777-3782. Young, K. G., and Copeland, J. W. (2010). Formins in cell signaling. Biochim Biophys Acta 1803, 183-190. Zemel, M. B. (2003). Mechanisms of dairy modulation of adiposity. J Nutr 133, 252S-256S. Zheng, B., Han, M., Bernier, M., and Wen, J. K. (2009). Nuclear actin and actin-binding proteins in the regulation of transcription and gene expression. FEBS J 276, 2669-2685. Zhu, S., Si, M. L., Wu, H., and Mo, Y. Y. (2007). MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem 282, 14328-14336.
WJCs 是從臍帶結締組織中萃取出來的間葉幹細胞,在一般細胞生長的培養液,可以穩定的繼代培養生長;而在含有特殊細胞分化因子的培養液,則可以被誘導分化成不同功能型態的細胞。由於多數細胞動態活性的表現可能與肌動蛋白絲聚合與降解機轉有關;然而目前對於間葉幹細胞內經由表現許多可調控肌動蛋白骨架動態重組的結合蛋白-ABPs,來影響細胞內肌動蛋白骨架動態重組的作用機轉並不清楚。近年來,細胞骨架結構與幹細胞分化能力之間的關聯性,也開始被科學家重視及探討。因此,本研究論文旨在探討,肌動蛋白細胞骨架與其調控蛋白-ABPs對WJCs分化成脂肪細胞的影響。在前實驗結果發現:WJCs在誘導進行脂肪分化初期,細胞內的肌動蛋白絲會形成張力纖維,並且減少蛋白分子的表現量;到了分化成脂肪細胞時,張力纖維便會明顯消失,游離的肌動蛋白分子則聚集在油滴周圍。然而,另一種細胞內微管骨架則發現是以不規則的方式排列充滿在整個細胞中,成為脂肪細胞主要的細胞架構。進一步的實驗結果也顯示:脂肪細胞分化的過程中,不同的結合蛋白-ABPs,例如:gelsolin, tropomyosin-1及formin-2等基因表現可能是導致肌動蛋白骨架重組的主要因子。為了進一步瞭解ABPs的分子功能對脂肪細胞分化的影響,我們利用siRNA進行基因靜默細胞內特定ABPs結合蛋白,包括:formin-2, profilin, tropomyosin-1 以及caldesmon等基因的表現;另外,也對切割調控蛋白-gelsolin 進行基因放大。這些基因靜默以及放大的細胞則分別再進行誘導分化成脂肪細胞。實驗中,脂肪細胞分化的程度,則分別利用細胞染劑來觀察脂肪油滴生成,以及利用即時聚合連鎖反應定量儀來量化脂肪細胞內重要的轉錄因子 (例如:PPAR-γ2)、油滴包覆 (例如:adipophilin)、脂肪酸生成 (例如:FAS)、以及脂肪荷爾蒙 (例如:leptin) 等基因表現量來鑑識。實驗結果顯示︰基因靜默細胞內的鍵結蛋白,會促進細胞脂肪分化時PPAR-γ2、adipophilin、FAS及leptin的基因表現,暗指著促進脂肪細胞分化。但當細胞內大量表現切割調控蛋白gelsolin,則發現會抑制脂肪細胞內的轉錄因子PPAR-γ2的基因表現;並且在脂肪分化後期也會降低adipophilin及FAS的基因表現;顯示降低分化成脂肪細胞的能力。因此,減緩細胞內肌動蛋白絲的形成以及破壞肌動蛋白骨架的穩定性,都會促進WJCs進行脂肪分化;但大量截切肌動蛋白絲,可能導致降低分化脂肪細胞內的轉錄因子PPAR-γ2的基因表現,因而影響繼續分分化成脂肪細胞的能力。綜合這些研究結果︰經由調控肌動蛋白絲動態形成相關的結合蛋白-ABPs之基因表現,臍帶間葉幹細胞可被誘導分化成脂肪細胞,且在分化過程中細胞內肌動蛋白絲的聚合與其張力,可能是重要的決定因子。

Wharton''s jelly cells (WJCs) are the mesenchymal stem cells derived from umbilical cord, and can be expanded in culture and induced to differentiate into multiple cell types. The dynamic events in cell proliferation and differentiation of WJCs require extensive remodeling of actin filaments by the action of a multitude of actin-binding proteins (ABPs). However, information is limited on how the growth-related signal is conveyed to trigger ABPs to act in the regulation of actin filament organization in WJCs. In this study, human umbilical CD105-positive WJCs were cultured to investigate the functional roles of actin-binding proteins in adipogenic differentiation. Firstly, at the early stage (Day 4) of WJCs induced adipogenesis β-actin was found to be polymerized into F-actin as formed the stress fibers, in concomitant with the decreased amount of G-actin. At the later stage of differentiation (Day 14-21), the stress fibers disappeared and the dissociated β-actin was located at the periphery of differentiated-adipocytes. Concomitantly, microtubule cytoskeleton became evidently found to be distributed within the adipogenic cells. In addition, we found functional changes in gene expression of several ABPs (i.e. formin-2, tropomyosins, and gelsolin) were associated with morphological transformation in WJCs differentiation into adipocytes. To further understand the molecular control of ABPs on actin filament organization in WJC-induced adipogenesis, specific siRNAs for several ABPs (i.e. formin-2, tropomyosin-1, caldesmon, and profilin) and gelsolin-constructed vector were introduced into WJCs. The transformed WJCs were then studied for adipogenic differentiation. Adipogenic differentiation was indicated by oil red O staining for lipid synthesis, and by using real-time qPCR to quantify the mRNA expression of PPAR-γ2, adipophilin, FAS, and leptin. Results obtained indicated that gene silence of these ABPs would promote the gene expression of PPAR-γ2、adipophilin、FAS and leptin in the adipogenesis of WJCs. However, gelsolin overexpression would inhibit the gene expression of PPAR-γ2, and that might cause to decrease the gene expression of adipophilin and FAS at the later process of adipogenesis. Apparently, reduction of F-actin formation and stability would promote WJCs differentiation into adipocytes. Severing F-actin by gelsolin overexpression would reduce the capability of WJCs to be induced into adipogenesis. Taken together, results found in this thesis indicated that the gene expression of ABPs modulating the dynamics of actin filament formation would affect the capability of WJCs to be induced into adipogenesis. Moreover, the F-action polymerization and its generated tension might play crucial roles in the process of WJCs differentiation into adipocytes
其他識別: U0005-2707201018070400
Appears in Collections:生命科學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.