Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/23175
標題: 以動態模式探討流量對武陵地區溪流石附生藻生物量之影響
Modeling the effects of flow disturbance on biomass dynamics of epilithic algae in streams of the Wuling Area
作者: 吳姿儀
Wu, Zih-Yi
關鍵字: the Cijiawan Stream basin;七家灣溪流域;Periphyton;discharge;flood;dynamic model;附生藻;流量;洪氾;動態模式
出版社: 生命科學系所
引用: 1.中文部分 (1)于淑芬。2008。武陵地區水生昆蟲對石附生藻類影響之研究。國立中興大學生命科學研究所博士論文。 (2)林幸助、鄭佾展、鍾豊昌、柯伶樺、許惠瑜、林良瑾、黃秋平。2006。武陵地區長期生態監測暨生態模式建立成果報告-藻類、資料整合分析與生態模式建構。內政部營建署雪霸國家公園管理處。 (3)林幸助、陳建宏、鄭佾展、蘇美如、林良瑾。2007。武陵地區長期生態監測暨生態模式建立成果報告-藻類、資料整合分析與生態模式建構。內政部營建署雪霸國家公園管理處。 (4)林幸助、黃秋平、林資沁、吳姿儀、林良瑾。2009。武陵地區長期生態監測暨生態模式建立成果報告-藻類研究與資料整合。內政部營建署雪霸國家公園管理處。 (5)柳中明、吳明進、林淑華、陳盈蓁、楊胤庭、林瑋翔、曾于恆、陳正達。2008。臺灣地區未來氣候變遷預估。台灣大學全球變遷研究中心。 (6)高樹基、黃誌川、李宗祐、陳計君、簡偉如、郭鎮維。2007。武陵地區長期生態監測暨生態模式建立成果報告-流量、水溫模式與主要元素通量研究。內政部營建署雪霸國家公園管理處。 (7)高樹基、黃誌川、李宗祐、簡偉如、郭鎮維、黃昶斌。2008。武陵地區長期生態監測暨生態模式建立成果報告-流量、水溫模式與主要元素通量研究。內政部營建署雪霸國家公園管理處。 (8)郭美華、丘明智。2008。武陵地區長期生態監測暨生態模式建立成果報告-水棲昆蟲研究。內政部營建署雪霸國家公園管理處。 (9)郭美華、丘明智。2010。武陵地區長期生態監測暨生態模式建立成果報告-水棲昆蟲研究。內政部營建署雪霸國家公園管理處。 (10)溫珮珍。2005。武陵地區水溫與營養鹽添加對溪流淺流區石附生藻類之影響。立中興大學生命科學研究所碩士論文。 (11)葉昭憲、黃立文。2008。武陵地區長期生態監測暨生態模式建立成果報告-水文與物理棲地研究。內政部營建署雪霸國家公園管理處。 (12)鄭佾展。2007。蘭陽溪與七家灣溪流域生態系模式之比較分析。國立中興大學生命科學研究所碩士論文。 (13)蘇美如。2009。武陵地區溪流潭、流及瀨之石附生矽藻生物量及群集結構分析。國立中興大學生命科學研究所碩士論文。 2.西文部分 (1)Asaeda, T. and D. H. Son. 2000. Spatial structure and populations of a periphyton community: a model and verification. Ecol. Model. 133: 195-207. (2)Asaeda, T. and D. H. Son. 2001. A model of the development of a periphyton community: resource and flow dynamics. Ecol. Model. 137: 61-75. (3)Azim, M. E., M. C. J. Verdegem, A. A. van Dam, and M. C. M. Beveridge, 2005. Periphyton: Ecology, Exploitation and Management. CABI, U.S.A. (4)Bergey, E. A. 1999. Crevices as refugia for stream diatoms: effect of crevice size on abraded substrates. Limnol. and Oceanogr. 44: 1522-1529. (5)Bergey, E. A. 2004. The influence of crevice size on the protection of epilithic algae from grazers. Freshwater Biol. 49: 1014-1025. (6)Bierman, V. J., Jr., D. M. Dolan, E. F. Soermer, J. E. Gaoonon, and V. E. Smith. 1980. The development and calibration of a multi-class phytoplankton model for Saginaw Bay, Lake Huron: great lakes environmental planning study. Great lakes environmental planning study. Contribution No. 33. Great lakes basin commission, Ann Arbor science Publishing. Michigan. (7)Biggs, B. F. J. and M. E. Close, 1989. Periphyton biomass dynamics in gravel bed rivers: the relative effects of flows and nutrients. Freshwater Biol. 32: 49-59. (8)Biggs, B. J. F. and S. Stokseth. 1996. Hydraulic habitat preferences for periphyton in rivers. Regul. Riv. 12: 251-61. (9)Biggs, B. J. F. and R. A. Smith. 2002. Taxonomic richness of stream benthic algae: effects of flood disturbance and nutrients. Limnol. and Oceanogr. 47: 1175-1186. (10)Bothwell, M. L. 1988. Growth rate responses of lotic periphytic diatoms to experimental phosphorus enrichment: The influence of temperature and light. Can. J. Fish. Aquat. Sci. 45: 261-270. (11)Borchardt, M. A. 1994. Effects of flowing water on nitrogen- and phosphorus- limited photosynthesis and optimum N:P ratios by Spirogyra fluviatilis (Charophyceae). J. Phycol. 30: 418-430. (12)Borchardt, M. A., 1996. Nutrients, p 183-227. In Algal ecology of freshwater benthic ecosystems. Aquatic Ecology Series. R. J. Stevenson, M. L. Bothwell, R. L. Lowe (eds.). Academic Press, Boston. (13)Boulêtreau, S., F. Garabétian, S. Sauvage, and J-M. Sanchez-Pérez. 2006. Assessing the importance of a self-generated detachment process in river biofilm models. Freshwater Biol. 51: 901-912. (14)Boulêtreau, S., O. Izagirre, F. Garabétian, S. Sauvage, A. Elosegi, and J-M Sánchez-Pérez. 2008. Identification of minimal adequate model to describe the biomass dynamics of river epilithon. River. Res. Applic. 24: 36-53. (15)Boulêtreau, S., O. Izagirre, F. Garabétian, S. Sauvage, A. Elosegi, and J-M. Sanchez-Pérez. 2008. Identification of a minimal adequate model to describe the biomass dynamics of river epilithon. River Res. Appl. 24: 36-53. (16)Bunn, S. E. and A. H. Arthington. 2002. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environ. Manage. 30: 492-507. (17)Cattaneo, A. and B. Mousseau. 1995. Empirical analysis of the removal rate of periphyton by grazers. Oecologia 103: 249-254. (18)Chiu, M. C., M. W. Kuo, Y. H. Sun, S. Y. Hong, and H. C. Kuo. 2008. Effects of flooding on avian top-predators and their invertebrate prey in a monsoonal Taiwan stream. Freshwater Biol. 53: 1335-1344. (19)Clarke, K. R. and R. M. Warwick. 2001. Charge in marine communities: an approach to statistical analysis and interpretation, 2nd edition. PRIMER-E: Plymouth. U.K. (20)Colletti, P. J., W. Blinn, A. Pickart, V. T. Wagner, 1987. Influence of different densities of the mayfly grazer Heptagenia criddlei on lotic diatom communities. J. N. Am. Benthol. Soc. 6: 270-280. (21)Dodds, W. K., V. H. Smith, K. Lohman. 2002. Nitrogen and phosphrous relationships to benthic algal biomass in temperate streams. Can. J. Fish. Aquat. Sci. 59: 865-874. (22)Duong, T. T. 2006. Responses of periphytic diatoms to organic and metallic pollution in NhueTolich hydrosystem (Hanoi, Vietnam) and Lot-Riou Mort hydrosystem. PhD Thesis. Bordeaux 1 university, France. (23)Eloranta, P. V. 1982. Periphyton growth and diatom community structure in a cooling water pond. Hydrobiologia 96: 253-265. (24)Feminella, J. W. and C. P. Hawkins. 1995. Interactions between stream herbivores and periphyton: a quantitative analysis of past experiments. J. N. Am. Benthol. Soc. 14: 465-509. (25)Fovet, O., G. Belaud, X. Litrico, S. Charpentier, C. Bertrand, A. Dauta, and C. Hugodot. 2010. Modelling periphyton in irrigation cannals. Ecol. Model. 221: 1153-1161. (26)Garnier, J, J Némery, G. Billen, and S. Théry. 2005. Nutrient dynamics and control of eutrophication in the Marne River system: modelling the role of exchangeable phosphorus. J. Hydrol. 304: 397-412. (27)Ghosh, M., J. P. Gaur. 1998. Current velocity and the establishment of stream algal periphyton commumities. Aquat. Bot. 60: 1-10. (28)Goldsborough, L. G. and G. G. C. Robinson. 1985.Seasonal succession of diatom epiphyton on dense mats of Lemna minor. Can. J. Bot. 63: 2332-2339. (29)Graham. J. M., C. A. Lembi, H. L. Adrian, and D. F. Spencer. 1995. Physiological responses to temperature and irradiance in Spirogyra (Zygnematales, Charophyceae). J. Phycol. 31: 531-540. (30)Hill, W. R. and H. L. Boston. 1991. Community development alters photosynthesis-irradiance relations in stream periphyton. Limnol. and Oceanogr. 36: 1375-1389. (31)Hill, W. R., M. G. Ryon, and E. M. Schilling, 1995. Light limitation in a stream ecosystem: responses by primary producers and consumers. Ecology. 76: 1297-1309. (32)Hill, W. R. and S. Fanta. 2008. Phosphorus and light colimit periphyton growth at subsaturating irradiances. Freshwater Biol. 53: 215-225. (33)Hill, W. R., S. E. Fanta, and B. J. Roberts. 2008. 13C dynamics in benthic algae: Effects of light, phosphorus, and biomass development. Limnol. Oceanogr. 53: 1217–1226. (34)Hill, W. R., S. E. Fanta, and B. J. Roberts. 2009. Quantifying phosphorus and light effects in stream algae. Limnol. and Oceanogr. 54: 368-380. (35)Hootsmans, M. J. M., 1994. A growth analysis model for Potamegon pectinatus L, p. 213-249. In: Vierssen, W. V., M. J. M. Hootsmans, and J. Vermaat (Eds.), Lake Velume, a macrophyte-dominated system under eutrophication stress. Kluwer Academic Publishers, Dordrecht. (36)Horner, R. R., E. B. Welch, and R. B. Veenstra. 1983. Development of nuisance periphytic algae in laboratory streams in relation to enrichment and velocity, p 121-134. In Periphyton of freshwater Ecosystem (ed. R. G. Wetzel). Dr. Wu Junk Publishers. The Hague. (37)Horner, R. R., E. B. Welch, M. R. Seeley, and J. M. Jacoby. 1990. Responses of periphyton to changes in current velocity, suspended sediment and phosphorus concentration. Freshwater Biol. 24: 215-232. (38)Hutchinson, G. E., 1957. A treatise on Limnology. Wiley. N.Y. (39)IPCC. 2007. Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Solomon, S., D. Qin, and M. Manning (eds.). Cambridge University Press. (40)Jasper, S., and M. L. Bothwell. 1986. Photosynthetic characteristics of lotic periphyton. Can. J. Fish. Aquat. Sci. 43: 1960-1969. (41)Jones, J. I., J. O. Young, J. W. Eaton, and B. Moss. 2002. The influence of nutrient loading, dissolved inorganic carbon and higher trophic levels on the interaction between submerged plants and periphyton. J. Ecol. 90: 12-24. (42)Jorgensen, S. E., B. C. Patten, and M. Straskraba. 2000. Ecosystem emerging IV: Growth. Ecol. Model. 126: 249-284. (43)Jorgensen, S. E. and G. Bendoricchio. 2001. Fundamentals of Ecological Modelling. Elsevier Science. Amsterdam. (44)Labiod, C., R. Godillot, B. Caussade. 2007. The relationship between stream periphyton dynamics and near-bed turbulence in rough open-channel flow. Ecol. Modell. 209: 78-96. (45)Lamb, M. A., and R. L. Lowe. 1987. Effects of current velocity on the physical structuring of diatom (Bacillariophyceae) communities. Ohio. J. Sci. 87: 72-78. (46)Lobban, C. S., D. J. Chapman, and B. P. Kermer. 1988. Experimental Phycology: a laboratory manual. Cambridge University Press. Cambridge. (47)Maltais, M. J. and W. F. Vincent. 1997. Periphyton community structure and dynamics in a subarctic lake. Can. J. Bot. 75: 1556-1569. (48)McCormick, P. V. and R. J. Stevenson. 1991a. Mechanisms of benthic algal succession in lotic environments. Ecology. 72: 1835-1848. (49)McIntire, C. D. 1973. Periphyton dynamics in laboratory streams: a simulation model and its implications. Ecol. Monogr. 43: 399-342. (50)McIntire, C. D. and J. A. Colby. 1978. A hierarchical model of lotic ecosystems. Ecol. Monogr. 48: 167-190. (51)Migne′, A., N. Spilmontb, D. Davoultc. 2004. In situ measurements of benthic primary production during emersion: seasonal variations andannual production in the Bay of Somme (eastern English Channel, France). Cont. Shelf. Res. 24: 1437-1449. (52)Patrick, R. 1976. The formation and maintenance of benthic diatom communities. Proc. Amer. Phil. Soc. 120: 485-513 (53)Peterson, C. G., and R. J. Stevenson. 1992. Substratum conditioning and diatom colonization in different current regimes. J. Phycol. 25: 790-793. (54)Poff, N. L. and J. K. H. Zimmerman. 2009. Ecological responses to altered flow regimes: a literature review to inform the science and management of environment flows. Freshwater Biol. 55: 194-205. (55)Raven, J. A. 1992. How benthic macroalgae cope with flowing freshwater: Resource acquisition and retention. J. Phycol. 28: 133-146. (56)Rier, S. T. and R. J. Stevenson. 2006. Response of periphytic algae to gradients in nitrogen and phosphorus in streamside mesocosms. Hydrobiologia. 561: 131-147. (57)Rosemarin, A. S. 1982. Phosphorus nutrition of two potentially competing filamentous algae, Cladophora glomerata (L.) Kutz. and Stigeoclonium tenue (Agardh) Kutz. from Lake Ontario. J. Great. Lakes. Res. 8: 66-72. (58)Rutherford, J. C., M. R. Scarsbrook, N. Broekhuizen. 2000. Grazer control of stream algae: modeling temperature and flood effects. J. Environ. Eng. 126: 331-339. (59)Rutherford, J. C. and S. M. Cuddy. 2005. Modelling periphyton biomass, photosynthesis and respiration in streams. Technical Report No. 23/05, CSIRO Land and Water, Canberra. (60)Saravia, L. A., F. Momo, and L. D. B. Lissin. 1998. Modelling periphyton dynamics in running water. Ecol. Model. 114: 35-47. (61)Soininen, J and K. Könönen, 2004. Comparative study of monitoring South-Finnish rivers and streams using macroinvertebrate and benthic diatom community structure. Aquat. Ecol. 38: 63-75. (62)Son, D. H., T. Fujino. 2003. Modeling approach to periphyton and nutrient interaction in a stream. J. Environ. Eng. 129: 834-843. (63)Souchon, Y., C. Sabaton, R. Deibel, D. Reiser, J. Kershner, M. Gard, C. Katopodis, P. Leonard, N. L. Poff, W. J. Miller, and B. L. Lamb. 2008. Detecting biological responses to flow management: missed opportunities; future directions. River. Res. Appl. 24: 506-518. (64)Steinman, A. D., C. D. McIntire, S. V. Gregory, G. A. Lamberti, and L. Ashkenas. 1987a. Effect of herbivore type and density on taxonomic structure and physiognomy of algal assemblages in laboratory streams. J. North. Am. Benthol. Soc. 6: 175-188. (65)Steinman, A. D., 1996. Effects of grazers on freshwater benthic algae, p 341-373. In Algal ecology of freshwater benthic ecosystems. Aquatic Ecology Series. R. J. Stevenson, M. L. Bothwell, R. L. Lowe (eds.). Academic Press, Boston. (66)Stevenson, R. J.., 1996. The stimulation and drag of current, p 321-340. In Algal ecology of freshwater benthic ecosystems. Aquatic Ecology Series. R. J. Stevenson, M. L. Bothwell, R. L. Lowe (eds.). Academic Press, Boston. (67)Stevenson, R. J., 1997. Scale-dependend determinants and consequences of benthic algal heterogeneity. J. N. Am. Benthol. Soc. 16: 248-262. (68)Toda, Y., T. Tsujimoto, Y. Tadakuma. 2009. Growth characteristics and primary productivity of periphyton in shallow sand river. In: Proceedings of 7th International Symposium on Ecohydraulics and 8th International Conference on hydroinformatics. Concepciòn, Chile. (69)Tsujimoto, T. and T. Tashiro. 2004. Application of Population Dynamics Modeling to Habitat Evaluation - Growth of Some Species of Attached Algae and Its Detachment by Transported Sediment. Hydroécol. Appl. 1: 161-174. (70)Uehlinger, U., H. Bührer, P. Reichert. 1996. Periphyton dynamics in a floodprone prealpine river: evaluation of significant processes by modeling. Freshwater Biol. 36: 249-263. (71)Van der Grinten, E., M. Janssen, S. G. H. Simis, C. Barranguet, and W. Admiraal. 2004. Phosphate regime structures species composition in cultured phototrophic biofilms. Freshwater Biol. 49: 369-381. (72)Wetzel, R. G. 1983. Limnology. Saunders College Publishing. U.S.A. (73)Yu, S. F. and H. J. Lin, 2009. Effects of agriculture on the abundance and community structure of epilithic algae in mountain streams of subtropical Taiwan. Botanical Studies 50: 73-87.
摘要: 
每年颱風為台灣帶來豐沛的降雨,同時也是武陵地區溪流重要的干擾因子。石附生藻為七家灣溪流域主要的初級生產者,提供水生昆蟲和魚類等重要的食物來源,故有必要瞭解石附生藻與其他生物及非生物等環境因子間之交互作用。本研究藉由建構數理模式來分析影響石附生藻生物量動態變化的主要環境因子,其目的為量化流量與附生藻生物量之關係和探討環境因子對附生藻生長的影響。
附生藻生物量在全年中之動態變化,主要與影響附生藻生長之生長率和分離率等作用機制有關。此外,洪氾造成基質被水流沖刷,使附著於基質上的附生藻分離脫落;洪氾過後,流量會幫助附生藻快速累積生物量,直到生物量高過初始生物量後,進而成為限制生物量累積的環境因子。濱岸為天然原始林的桃山西溪與高山溪中,溫度對附生藻的生長率為負向影響,其他溪流則為正向影響,尤以濱岸多有農業活動的有勝溪,夏季時會出現生物量高峰,與溫度有正向的幫助密不可分。因此,在武陵地區七家灣溪流域中,附生藻所呈現的動態變化與流量、溫度較為相關。

Typhoons bring abundant rainfall in Taiwan, it is also an important disturbance factor in Cijiawan Stream basin. Periphyton is the primary producer, it also provides food for aquatic insects and fishes in this region. This study build numeral models to describe the relationships between periphyton biomass and environment factors for quantifying the effects of discharge and biomass, and probe into the distributions of periphyton in this region.
There is a distinct dynamics of periphyton on different phases and in different streams correlates with different growth rate and detachment rate. When flooding, periphyton is detached from stones because the bed moved by flood; after flood, algal biomass accumulate quickly because discharge will help accumulation until exceeding initial biomass. There is positive correlation of temperature in the Cijiawan Stream basin for higher growth rate, except the Taoshan West Stream and the Gaoshan Stream due to their nature environment. In particular, the high algal biomass at the Yousheng stream in summer with intensive agriculture relate closely to the strong positive correlation of temperature. Therefore, the dynamics of periphyton is correlated with discharge, temperature, and aquatic insects in different streams of the Cijiawan Stream basin.
URI: http://hdl.handle.net/11455/23175
其他識別: U0005-3107201010403900
Appears in Collections:生命科學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.