Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/23211
DC FieldValueLanguage
dc.contributor陳春榮zh_TW
dc.contributor黃琮濱zh_TW
dc.contributor.advisor徐善慧zh_TW
dc.contributor.advisorShan-hui Hsuen_US
dc.contributor.author陳培陽zh_TW
dc.contributor.authorChen, Pei-Yangen_US
dc.contributor.other中興大學zh_TW
dc.date2007zh_TW
dc.date.accessioned2014-06-06T07:19:48Z-
dc.date.available2014-06-06T07:19:48Z-
dc.identifierU0005-2007200621525600zh_TW
dc.identifier.citation1.Curtis A , Wilkinson A. (2001)Nantotechniques and approaches in biotechnology. Trends in Biotechnology 19 , 97-101. 2.Clark P, Connolly P, Curtis ASG, Dow JAT, Wilkisson CDW. (1991) Cell guidance by ulrtrafine topography in vitro .J Cell Sci 99, 73-77. 3.Dably MJ, Riehle MO, Johnstone HJH, Affrossman S, Curtis ASG. (2002)In vitro reaction of endothelial cell to polymer demixednanotopography. Biomaterials 23, 2945- 2954. 4.Curtis ASG, Varde M. (1964)Control of cell baehavior : Topolgical factor. J Natl Cancer Res Inst 33, 15-26. 5.Clark P, Connolly P, Curtis ASG, Dow JAT, Wilkisson CDW. (1990)Topographical control of cell behavior .Ⅱmultiple grooved substrata. Development 108, 635-644. 6.Meyle J, Gutling K, Nisch W. (1995)Variation in contact guildance by human cells on a microstructured surface. J Biomed Mater Res 29, 81-88. 7.Clark P, Connolly P, Curtis ASG, Dow JAT, Wilkisson CDW. (1987)Topographical control of cell behavior : I. Simple step cues.Development 99, 439-448. 8.Green AM, Jansen JA, Ven Der Waerden JPCM, Von Recum AF. (1994)Fibroblast response to microtextured silicone surfaces : texture orientation into or out of the surface. J Biomed Mater Res 28,647-653. 9.Campbel CE, Von Recum, AF. (1989) Microtopography and soft tissue response. J Invest Surg 2, 51-74. 10.Britland S, Mc Craig C. (1996) Embryonic Xenopus neuritis integrate And respond to simultaneous electrical and adhesive guidance cues. Exp Cell Res 225 , 31-38. 11.Madou M. (1997)Fundamentals of microfabrication .Boca Raton, New York :CRC Press 12.Thompson LF, Willson CG, Bowden MJ. (1995)Introduction to microlithography. Washington DC : American Chemical Society . 13.Vieu C, Carcenac F, Pepin A, Chen Y, Mejias M, Lebib A, Manin-Ferlazzo L, Launois H. (2000) Electron beam lithography:resolution limits and applications .Appl Surf Sci 164, 111-117. 14.Affrosssman S, Hemn G, O,Neill SA, Pethrick RA, Stamm M. (1996) Surface topography and composition of deuterated polystrene-poly(bromostrene) blends. Macromolecules 29, 5010-5016 . 15.Affrosssman S, O,Neill SA, Pethrick RA, Stamm M. (1998) Topogrphy and surface composition of thin films of blends of polystrene with bromiated polystrene : effects of varying the degree of bromination and annealing. Macromolecules 31, 6280-6288. 16.Affrosssman S, Stamm M. (2000) The effect of molecular weight on The topography thin films of blends of polystrene and poly(bromostrene) . Colloid Polym Sci 278, 888-893. 17.Hanarp P, Sutherland D, Gold J, Kasemo B. (1999) Nanostructured Model biomaterial surfaced prepared by colloidal lithograpy. Nanostructure Materials 12, 429- 432. 18.Thapd AT, Webster TJ, Haberstroh KM. (2003) Nano- structured Polymers enhance bladder smooth muscle cell function. Biomaterials 24, 2915-2926. 19.Miller DC, Thapa A, Haberstroh KM, Webster, TJ. (2004) Endothelial And vascular smooth muscle cell function on poly(lactic-co-glycolic acid)with nano-structured surface features. Biomaterials 25, 53-61. 20.Vance RJ, Miller DC, Thapa A, Haberstroh KM, Webster TJ. (2004) Decreased fibroblast cell density on chemically degraded poly-lactic-co-glycolic acid, polyurethane ,and polycaprolactone. Biomaterials 25, 2095-2103. 21.Washburn NR, Yamada KM, Simon Jr CG, Scott SB, Keennedy E J. (2004)A. High-throughput investigation of osteoblast response to Polymer crystallinity:influence of nanometer-scale roughness on proloferation.Biomaterials 25, 1215-12224. 22.Lofberg J, Ahlforsk K, Fallstrom C. (1980) Neural crest cell migration In relation to extracellular matrix organization in embryonic axolotl trunk . Dev Biol 75, 148-167. 23.Wojciak-Stothard B, Curtis A, Monaghan W, Macdonald K, Wilkinsion CDW. (1998) Guidance and activation of murine macrophage by nanometeric-scale topography. J Biomed Mater Res 22, 939-957. 24. Dably MJ, Yarwood SJ, Riehle MO, Johnstone HJH, Affrossman S,Curtis ASG. (2002) Increasing fibroblast response to materials Using nano-topography and genetic measurement of cell response to 13nm high polymer demixed island. Exp Cell Res 276, 1-9. 25.Dably M, Child S, Riehle MO, Johnstone HJH, Affrossman S, Curtis ASG. (2003) Fbroblast reaction to island topography:change in cytoskeleton and morphology with time. Biomaterials 24, 927-935. 26.Chung TW, Liu DZ, Wang SY, Wang SS. (2003)Enhancement of the growth of human endothelial cells by surface roughness at nanometer scale. Biomaterials 24, 4655- 4661. 27.Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R. (2001) Enhanced osteoclast-like cell function on nanophase ceramics. Biomaterials 22 , 1327-1333. 28.Sgambato A,Cittadini A, Ardito R, Dardeli A, Facchini A, Pria PD, Colombo A. (2003)Osteoblast behavior on nanostructured titanium alloys. Materials Sciences& Engineer 23, 419-423. 29.Turner AM, Dowell N, Turner SW, Kam L, Isaacson M, Turrner JN , Craighead HG, Shain W. (2000) Attachment of astroglial cells to microfabricated pillar arrays of different geometries. J Biomed Mater Res 51, 430-441. 30.Connor TP, Duerr JS, Bentley D. (1990)Pioneer growth cone steering decision mediated by single filopodial contacts in situ. J Neurosci 10, 3935-3946. 31.Burridge K,Charanowska-Wodnick M. (1996) Focal adhesions contractility, and signaling. Annu Rev Cell Dev Biol 12, 463-519. 32.陳嘉芬. (2000)細胞生物學。藝軒出版社 33.李紹雄,劉益軍,聚氨酯樹脂及其應用,化學工業出版社 34.Gnter Oertel, Polyurethane Handbook, Hanser Publish, Munich Vienna New York, (1985) 35.Moncada, S., Herman, A. G., Higgs, E. A., and Vane, J. R. (1977).Differential formation of prostacyclin (PGX or PGI2) by layers of the arterial wall. An explanation for the anti-thrombotic properties of vascular endothelium. Thromb Res 11, 323-44. 36.Furchgott, R. F., and Zawadzki, J. V. (1980). The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288, 373-6. 37.Palmer, R. M., Ashton, D. S., and Moncada, S. (1988). Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 333, 664-6. 38.Gruetter, C. A., Barry, B. K., McNamara, D. B., Gruetter, D. Y.,Kadowitz, P. J., and Ignarro, L. (1979). Relaxation of bovine coronary artery and activation of coronary arterial guanylate cyclase by nitric oxide, nitroprusside and a carcinogenic nitrosoamine. J Cyclic Nucleotide Res 5, 211-24. 39.Lancaster, J. R., Jr. (1997). A tutorial on the diffusibility and reactivity of free nitric oxide. Nitric Oxide 1, 18-30. 40.Knowles, R. G., and Moncada, S. (1994). Nitric oxide synthases in mammals. Biochem J 298 (Pt 2), 249-58. 41.Forstermann, U., Schmidt, H. H., Pollock, J. S., Sheng, H., Mitchell, J. A., Warner, T. D., Nakane, M., and Murad, F. (1991). Isoforms of nitric oxide synthase. Characterization and purification from different cell types. Biochem Pharmacol 42, 1849-57. 42.Michel, T., and Feron, O. (1997). Nitric oxide synthases: which,where, how, and why? J Clin Invest 100, 2146-52. 43.Kroncke, K. D., Fehsel, K., and Kolb-Bachofen, V. (1997). Nitric oxide: cytotoxicity versus cytoprotection--how, why, when, and where Nitric Oxide 1, 107-20. 44.Ignarro, L. J. (1989). Biological actions and properties of endothelium-derived nitric oxide formed and released from artery and vein. Circ Res 65, 1-21. 45.Nathan, C. F., and Hibbs, J. B., Jr. (1991). Role of nitric oxide synthesis in macrophage antimicrobial activity. Curr Opin Immunol 3, 65-70. 46.Wei, X. Q., Charles, I. G., Smith, A., Ure, J., Feng, G. J., Huang, F. P., Xu, D., Muller, W., Moncada, S., and Liew, F. Y. (1995). Altered immune responses in mice lacking inducible nitric oxide synthase. Nature 375, 408-11. 47.Watanabe, K., Kawamori, T., Nakatsugi, S., and Wakabayashi, K. (2000). COX-2 and iNOS, good targets for chemoprevention of colon cancer. Biofactors 12, 129- 33. 48.Schmidt, H. H., and Walter, U. (1994). NO at work. Cell 78, 919-25. 49.Kubes, P., and Granger, D. N. (1992). Nitric oxide modulates microvascular permeability. Am J Physiol 262, H611-5. 50.Brady, A. J., Warren, J. B., Poole-Wilson, P. A., Williams, T. J., and Harding, S. E. (1993). Nitric oxide attenuates cardiac myocyte contraction. Am J Physiol 265, H176-82. 51.Radomski, M. W., Palmer, R. M., and Moncada, S. (1987). Endogenous nitric oxide inhibits human platelet adhesion to vascular endothelium. Lancet 2, 1057-8. 52.Queen, L. R., Xu, B., Horinouchi, K., Fisher, I., and Ferro, A. (2000). beta(2)-adrenoceptors activate nitric oxide synthase in human platelets. Circ Res 87, 39-44. 53.Kanwar, S., and Kubes, P. (1995). Nitric oxide is an antiadhesive molecule for leukocytes. New Horiz 3, 93- 104. 54.Chiavegatto, S., Dawson, V. L., Mamounas, L. A., Koliatsos, V. E., Dawson, T. M., and Nelson, R. J. (2001). Brain serotonin dysfunction accounts for aggression in male mice lacking neuronal nitric oxide synthase. Proc Natl Acad Sci U S A 98, 1277-81. 55.Sethi, S., and Dikshit, M. (2000). Modulation of polymorphonuclear leukocytes function by nitric oxide. Thromb Res 100, 223-47. 56.Dimmeler, S., Hermann, C., Galle, J., and Zeiher, A. M. (1999). Upregulation of superoxide dismutase and nitric oxide synthase mediates the apoptosis-suppressive effects of shear stress on endothelial cells. Arterioscler Thromb Vasc Biol 19, 656-64. 57.Tzeng, E., Kim, Y. M., Pitt, B. R., Lizonova, A., Kovesdi, I., and Billiar, T. R. (1997). Adenoviral transfer of the inducible nitric oxide synthase gene blocks endothelial cell apoptosis. Surgery 122, 255-63. 58.Dimmeler, S., and Zeiher, A. M. (1997). Nitric oxide and apoptosis: another paradigm for the double-edged role of nitric oxide. Nitric Oxide 1, 275-81. 59.Murohara, T., Witzenbichler, B., Spyridopoulos, I., Asahara, T., Ding, B., Sullivan, A., Losordo, D. W., and Isner, J. M. (1999). Role of endothelial nitric oxide synthase in endothelial cell migration. Arterioscler Thromb Vasc Biol 19, 1156-61. 60.Cooke, J. P., and Losordo, D. W. (2002). Nitric oxide and angiogenesis. Circulation 105, 2133-5. 61.Denninger, J. W., and Marletta, M. A. (1999). Guanylate cyclase and the.NO/cGMP signaling pathway. Biochim Biophys Acta 1411,334-50. 62.Simoncini, T., Hafezi-Moghadam, A., Brazil, D. P., Ley, K., Chin, W. W., and Liao, J. K. (2000). Interaction of oestrogen receptor with the regulatory subunit of phosphatidylinositol-3-OH kinase. Nature 407, 538-41. 63.Datta, S. R., Brunet, A., and Greenberg, M. E. (1999). Cellular survival: a play in three Akts. Genes Dev 13, 2905-27. 64.Griess, P. (1879). Bemerkungen zu der abhandlung der H.H. Weselsky und Benedikt "Ueber einige azoverbindungen". Chem Ber 12, 426-428. 65. Jandt KD. (2001)Atomic force microscopy of biomaterials surfaces and interfaces.Sur. Sci 491, 303- 332. 66.Oliveira1 PT, Nanci A. (2004) Nanotexturing of titanium- based surfaces upregulates expression of bone sialoprotein and osteopontin by cultured osteogenic cells. Biomaterials 25, 403–413. 67. Dalbya MJ, Giannarasa D, Riehlea MO, Gadegaarda N, Affrossmanb S, Curtisa ASG. (2004) Rapid fibroblast adhesion to 27nm high polymer demixed nano-topography. Biomaterials 25, 77–83. 68.Pillar RM,Deporter DA,Watson PA,Valiquettl N.Dental (1991)implamt design –Effect on bone remodeling. J Biomed Mater Res 25, 467-483. 69.Buser D, Nydegger T, Hirt HP, Cochran DL, Nolte LP. (1998)Removal torque values of titanium implants in the maxilla of miniature pigs. Int J Oral Maxillofac Implants 13, 611-619. 70. Boyan BD, Batzer R, Kieswetter K, Liu Y, Cochran DL, Dean DD, Schwartz Z. (1998)Titanium surface roughness alters responsiveness of MG-63 osteoblast-like cells to 1α,25-(OH)2D3. J Biomed Mater Res 39, 77-85. 71. Batzer R, Liu Y, Cochran DL, Szmuckler-Moncler S, Dean DD,Boyan BD, Schwartz Z. (1998)Prostaglandine mediate the effects of titanium surface roughness on MG63 osteoblast-like cells and alter cell responsiveness to 1 α,25-(OH)2D3. J Biomed Mater Res 41, 489-496. 72. Hsiang-Jung Tseng, Cheng-Ming Tang, Shan-hui Hsu, Enhanced biocompatibility of polyurethane-silver nanocomposites. The 6th conference on membrane science & technology in Taiwan, 8 th -9 th June 2006, Chung-Li, Taiwan, ROC.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/23211-
dc.description.abstract本研究是以不同粒徑的奈米銀-聚胺酯複合材料做為研究對象,針對材料特性、材料與細胞培養、材料與細胞基因表現等三大主題的評估。首先就材料特性方面,可發現奈米銀與聚胺酯所形成的複合材料,其表面有明顯的奈米相。在細胞貼附與生長方面,發現不同粒徑的奈米銀-聚胺酯複合材料較控制組有良好的細胞貼附與生長,由SEM觀察可發現細胞在奈米銀粒徑為25 nm的奈米銀-聚胺酯複合材料貼附形態較奈米銀粒徑為45 nm的奈米銀-聚胺酯複合材料平坦且有較多的細小薄偽足(filopodia)攀附,預期可增進內皮細胞在材料上的貼附和生長。在基因表現方面;我們發現在三種不同粒徑奈米銀的奈米銀-聚胺酯複合材料,同時比較25 ppm、50 ppm、75 ppm三種濃度的NO量、鈣離子濃度、eNOS表現,在50 ppm有最佳表現。由上述結果我們可推測在奈米銀-聚胺酯複合材料50 ppm對內皮細胞的貼附生長是最佳濃度。同時可證實內皮細胞與材料間的反應機制。最後我們可知道內皮細胞在不同粒徑的奈米銀-聚胺酯複合材料中的貼附生長以25 nm的粒徑大小最佳。zh_TW
dc.description.abstractThe subject of this research is different particle sizes of nanosilver-polyurethane composites and it is discussed under the three topics of (1)material characteristic, (2)material and cell culture and (3)material and gene expression to analyze the experiment. First, in material characteristic, we can find nano-phases are formed at the surface of nanosilver-polyurethane composites. In cell adhesion and growth, different particle sizes of nanosilver-polyurethane composites show better performance than the ones in control group. Through the SEM observation, we can find that the cell morphology is smoother in 25nm particle size of nanosilver-polyurethane composites than in 45nm one and there are more filopodia attached, which is an effective alternative for endothelial cells. In gene expression, we can find when NO production、calcium concentration and eNOS expression of the three concentrations(25ppm、50ppm、75ppm)were compared at the same time, the 50ppm one has the best performance among the three different particle sizes of nanosilver-polyurethane composites. The results show that the best concentration for the growth of endothelial cells is 50ppm nanosilver-polyurethane composites; meanwhile, it can be confirmed by the mechanism of reaction between endothelial cells and materials. Finally, we can understand the 25nm particle size has the best performance among the growth of different particle sizes of nanosilver-polyurethane composites.zh_TW
dc.description.tableofcontents第一章 緒論……………………………………………………………1 1-1 研究動機及目的………………………………… ………………1 1-2 研究設計…………………………………...............……2 第二章 文獻回顧………………………………………………………3 2-1細胞對環境及表面上圖紋的影響…………………………….….3 2-2細胞對奈紋圖文的反應…………………………………….…….4 2-2-1 奈米圖紋製造方法……………………………………….4 2-2-2 對奈米圖紋反應的細胞種類…………………………….6 2-2-3 奈米圖紋所引起的細胞信號傳遞過程………………...10 2-3實驗材料………………………...……………………………...10 2-3-1 聚胺酯之發展沿革……………………………………...10 2-3-2 水性PU…………………………………………………….11 2-3-3 水性PU的製造方法…………………………...……....13 2-3-3-1 溶液法或丙酮法……………………………...13 2-3-3-2 預聚物離子混合加工法………………….....13 2-3-3-3 熱融加工法…………………………………...14 2-3-3-4 酮亞胺/酮連氮………………………………..14 2-4血管內皮細胞…………………………………………….……...15 2-5 N0的合成與調控………………………………………………….16 2-5-1 NO的合成…………………………………………….…...16 2-5-2 NO對血管內皮細胞的生理效應…………………….…...17 2-5-3 NO、eNOS調控機制………………………………………..18 第三章 實驗材料與方法……………………………….…………….19 3-1實驗流程………………………….……………………………...20 3-2製造薄膜的藥品 …………………………………………... .21 3-3製造奈米銀-聚胺酯複合材料薄膜………………………….…..21 3-4用AFM檢定薄膜…………………………………………………….21 3-5培養基(HDMEM)之配製…………………………………….……21 3-6磷酸鹽類緩衝液(PBS)之配製……………………………….…22 3-7內皮細胞來源及培養…………………………………….……...22 3-7-1細胞名稱………………………………………………………..22 3-7-2細胞來源………………………………………………………..22 3-7-3內皮細胞培養…………………………………………………..23 3-8內皮細胞的貼附生長……………………………………….…...23 3-8-1細胞培養第一天實驗操作步驟………………………………..23 3-8-2細胞培養第二驗操作步驟………………………………….….24 3-8-3細胞培養第三天實驗操作步驟…………………………….….25 3-9電子顯微鏡(SEM)的觀察 ………………..................25 3-10 一氧化氮測定……………………………………………………25 3-11 胞內鈣離子濃度測定……………………………………………26 3-12 BECs細胞eNOS基因表現測定……………………….………...28 3-13以掃描式電子顯微鏡(SEM)觀察材料表面特徵………………28 3-14以原子力顯微鏡(AFM)觀察表面形態………….…………….29 3-15統計學分析………………………………….……………………30 第四章 結果與討論…………………..………………………………32 4-1表面物理特性分析……………………………….……………...32 4-1-1原子力顯微鏡(AFM)觀察表面形態………………………...32 4-1-2薄膜的表面………………………………………………………32 4-2細胞培養評估………………………………………….………...32 4-2-1細胞在不同濃度奈米銀-聚胺酯複合材料的貼附生長……….32 4-2-2細胞在不同粒徑奈米銀-聚胺酯複合材料的貼附生長……….33 4-3電子顯微鏡 (SEM)細胞形態觀察……………………….……...34 4-4基因表現實驗評估………………………….…………………...35 4-4-1BECs細胞釋放一氧化氮量的測定………………………………35 4-4-2BECs胞胞內鈣離子量的測定……………………………………36 4-4-3 BECs細胞eNOS基因表現……………………………………….37 第五章 討論…………………………………………..……………..39 第六章 結論與未來展望……………………………………...…….40 文獻參考………………………………………...………………....43 圖目錄索引 Figure1.奈米銀-聚胺酯複合材料AFM………………………….….48 Figure2. BEC 細胞型態………………………………………...…49 Figure3. BEC 細胞型態(45nm奈米銀-聚胺酯複合材料.……….50 Figure4. BEC 細胞型態(25nm奈米銀-聚胺酯複合材料).…….51 Figure5. BEC 細胞型態(5nm奈米銀-聚胺酯複合材料)……….52 Figure 6.不同奈米銀濃度對BECs細胞生長之影響…….…………53 (粒徑大小為之45nm奈米銀) Figure 7.不同奈米銀濃度對BECs細胞生長之影………………….54 (粒徑大小為之25nm奈米銀) Figure8.不同奈米銀濃度對BECs細胞生長之影響………………..55 (粒徑大小為之5nm奈米銀) Figure9.不同粒徑奈米銀對BECs細胞生長之影響…….………….56 Figure10. BECs一氧化氮釋放試驗……………….……………...57 (粒徑大小為之45nm奈米銀) Figure11. BECs一氧化氮釋放試驗…………………….………...58 (粒徑大小為之25nm奈米銀) Figure12. BECs一氧化氮釋放試驗………………………………..59 (粒徑大小為之5nm奈米銀) Figure 13. BECs細胞培養在奈米銀-聚胺酯複合材料對胞內鈣離子濃度試驗(粒徑大小為之45nm奈米銀)......................60 Figure 14. BECs細胞培養在奈米銀-聚胺酯複合材料對胞內鈣離子濃度試驗(粒徑大小為之25nm奈米銀)......................61 Figure 15. BECs細胞培養在奈米銀-聚胺酯複合材料對胞內鈣離子濃度試驗(粒徑大小為之5nm奈米銀).......................62 Figure 16. BECs細胞培養在奈米銀-聚胺酯複合材料對eNOS基因表現………................................................63 Figure 17. BECs細胞培養在奈米銀-聚胺酯複合材料對eNOS基因表現之影響(粒徑大小為之5nm奈米銀).......................64 Figure 18. BECs細胞培養在奈米銀-聚胺酯複合材料對eNOS基因表現之影響(粒徑大小為之25nm奈米銀)......................65 Figure 19. BECs細胞培養在奈米銀-聚胺酯複合材料對eNOS基因表現之影響(粒徑大小為之25nm奈米銀)......................66 Figure 20(a) 奈米銀粒徑5nm之奈米銀-聚胺酯複合材料與BECs細胞培養48h ×1.0k...........................................67 Figure 20(b) 奈米銀粒徑5nm之奈米銀-聚胺酯複合材料與BECs細胞培養48h ×1.0k...........................................67 Figure 21(a) 奈米銀粒徑25nm之奈米銀-聚胺酯複合材料與BECs細胞培養48h ×1.0k.........................................68 Figure 21(b) 奈米銀粒徑25nm之奈米銀-聚胺酯複合材料與BECs細胞培養48h ×2.0k.........................................68 Figure 21(a) 奈米銀粒徑45nm之奈米銀-聚胺酯複合材料與BECs細胞培養48h ×1.0k.........................................69 Figure 21(b) 奈米銀粒徑45nm之奈米銀-聚胺酯複合材料與BECs細胞培養48h ×1.0k.........................................69zh_TW
dc.language.isoen_USzh_TW
dc.publisher生命科學院碩士在職專班zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2007200621525600en_US
dc.subjectnanosilveren_US
dc.subject奈米銀zh_TW
dc.subjectnanosilver-polyurethane compositesen_US
dc.subjectNO productionen_US
dc.subjectGene expressionen_US
dc.subject奈米銀-聚胺酯複合材料zh_TW
dc.subjectNO量zh_TW
dc.subject基因表現zh_TW
dc.title內皮細胞在不同粒徑奈米銀-聚胺酯複合材料上之行為評估zh_TW
dc.titleBehavior of endothelial cells on the nanocomposites of polyurethane and silver nanoparticles of different sizesen_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1en_US-
item.grantfulltextnone-
Appears in Collections:生命科學系所
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.