Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/23223
標題: 大氣電漿與RGD蛋白質在軟骨組織工程之效用評估
Evaluation of the Efficacy of Air plasma and RGD Containing Fusion Protein in Cartilage Tissue Engineering
作者: 楊偉兆
Yang, Wei-Chao
關鍵字: RGD;RGD;air plasma;cartilage;articular cartilage tissue engineering;type II collagen;chitosan;大氣電漿;軟骨;關節軟骨組織工程;第二型膠原蛋白;幾丁聚醣
出版社: 生命科學院碩士在職專班
引用: 1. Hunter W. On the structure and diseases of articulating cartilage. Phil Trans 1743;470: 514-521 2. Mankin HJ. The response of articular cartilage to mechanical injury. J Bone Joint Surg 1982;64A: 460-466 3. Johnson LL. Arthroscopic abrasion arthroscopy. Historical and pathologic perspective: present status. Arthroscopy 1986;2: 54-59 4. Dandy DJ. Arthroscopic debridement of the knee for osteoarthritis. Journal of Bone & Joint Surgery- British 1991;73:6: 877-878 5. Johnson-Nurse C , Dandy DJ. Fracture-separation of articular cartilage in the adult knee. Journal of Bone & Joint Surgery- British 1985;67B: 42-43 6. Morelli V, Naquin C, Weave RV. Alternative therapies for traditional disease states: osteoarthritis. American Family Physician 2003; 67:2:339-344 7. Helmers S, Sharkey PF, McGuigan FX. Efficacy of irrigation for removal of particulate debris after cemented total knee arthroplasty. Journal of Arthroplasty 1999;14:5: 549-552 8. Lanza RP, Langer R, Vacanti J. Principles of tissue engineering 2nd, Academic Press , Takyo, San Diego. 1999 9. Clemson Advisory Board for Biomaterials. Definition of the word biomaterial, Thc 6th Annnal Intermalionel Biomaterial Symposium, April 20-24, 1974 10. Park JB, Lakes RS . Biomaterials An Introduction 2nd . Plenum Press, New York, 1992; p2-3 11. Turek SL. 傅宇輝等編譯,骨科學原理及應用,大中國圖書公司 民76 ;p 13-281 12. LeBaron RG, Athanasiou KA. Ex vivo synthesis of articular cartilage. Biomaterials 2000;21: 2575-2587 13. Buckwalter JA. Articular cartilage: tissue design and chondrocyte-matrix interactions. AAOS Inst Course Lect 1998;47: 477-486 14. Johnna JS, Mikos AG. Review: tissue engineering for regeneration of articular cartilage. Biomaterials 2000;21: 431-440 15. Harkness RD. Biological functions of collagen. Biol. Rev 1961;36: 399-463 16. Eyre DR, Wu JJ, Woods PE. The cartilage collagens: structural and metabolic studies. J Rheumatol 1991; 18: 49-51 17. Muir H. The chondrocytes, architect of cartilage: biomechanics, structure, function and molecular biology of cartilage matrix macromolecules. Bioassays 1995; 17: 1039-1048 18. Qi WN, Scully SP. Extracellular collagen regulates expression of transforming growth factor-beta1 gene. J Orthop Res 2000; 18: 928-932 19. Qi WN, Scully SP. Effect of type II collagen in chondrocyte response to TGF-beta 1 regulation. Exp Cell Res 1998; 241: 142-150 20. Qi WN, Scully SP. Extracellular collagen modulates the regulation of chondrocytes by transforming growth factor-beta 1. J Orthop Res 1997; 15: 483-490 21. Bissell MJ, Hall HG, Parry G. How does the extracellular matrix direct gene expression? J. Theor. Biol. 1982;99: 31-68 22. Gumbiner BM. Cell adhesion: The molecular basis of tissue architecture and morphogenesis. Cell 1996;84: 345-357 23. Shimaoka M, Takagi J, Springer TA. Conformational regulation of integrin structure and function. Annu. Rev. Biophys. Biomol. Struct 2002;31: 485–516. 24. Hynes RO. Integrins: A family of cell surface receptors. Cell 1987;48: 549-554 25. Hynes RO. Integrins: Versatility, modulation, and signaling cell adhesion. Cell 1992;69: 11-25 26. Gullberg D, Ekblom P. Extracellular matrix and its receptors during development. Int. J. Dev. Biol 1995;39: 845-854 27. Pierschbacher MD, Ruoslahti E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 1984;309: 30-33 28. Yamada KM, Kennedy DW. Dualistic nature of adhesive protein function: Fibronectin and its biological active peptide fragments can autoinhibit fibronectin function. J. Biol. Chem 1984;99: 29-36 29. Bar-Shavit, Sabbah RV, Lampugnani MG, Marchisio PC, Fenton JW, Vlodavsky I, Dejana E. An Arg-Gly-Asp sequence within Thrombin Promotes Endothelial Cell Adhesion. J. Cell Biol 1991;112: 335-344 30. Hautanen, Gailit AJ, Mann DM, Ruoslahti E. Effects of Modifications of the RGD Sequence and Its Context on Recognization by the Fibronectin Receptor. J. Biol. Chem 1989;264: 1437-1442 31. Hsu SH, Chu WP, Lin YS, Chiang YL, Chen DC , Tsai CL .The effect of an RGD-containing fusion protein CBD-RGD in promoting cellular adhesion. J. Biotechnol 2004; 3689:1-12. 32. D`Souza SE, Ginsberg MH, Plow EF. Arginyl-Glycyl-Aspartic Acid (RGD) : A Cell Adhesion Motif. TIBS 1990;16: 246-250 33. Mann BK, Tsai AT, Scott-Bruden T, West JL. Modification of surfaces with cell adhesion peptides alters ectracellualr matrix deposition. Biomaterials 1999;20: 2281-2286 34. Hsu SH, Whu SW, Hsieh SC, Tsai CL, Chen DC, Tan TS. Evaluation of chitosan-alginate- hyaluronate complexes modified by an RGD-containing protein as tissue engineering scaffolds for cartilage regeneration. Artificial Organs 2004; 28: 693-703 35. Hsu SH, Chang SH, Yen HJ, Whu SW, Tsai CL, Chen DC. Evaluation of biodegradable polyesters modified by type II collagen and RGD as tissue engineering scaffolding materials for cartilage regeneration. Artificial Organs 2006 Jan;30(1): 42-55 36. 郭霽慶,超音波刺激與動態培養對組織工程支架體外再生組織形成之影響,中興大學碩士論文 民91 37. 陳韻如,開發CBD-RGD融合蛋白質應用於固定化細胞培養,中興大學碩士論文 民85 38. 余蓉荃,含醣胺素結合區及RGD序列之人工細胞外間質蛋白,清華大學碩士論文 民94 39. 王三郎,水產資源利用學,高立圖書公司 民85 40. 陳慶源,以真菌發酵法生產幾丁聚醣,財團法人食品工業發展研究所出版 民90; p15-27 41. 林玫嬌,多孔狀幾丁聚醣複合基質之製備及特性探討,國立台灣大學化學工程學研究所碩士學位論文 民90;p7-9,p17-20 42. Suh JKF, Matthew HWT. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials 2000;21:2589-2598 43. Hirano S.Chitin and chitosan as novel biotechnological materials. Polym. Int. 1999;48:732-734 44. Kurita K. Chemistry and application of chitin and chitosan.Polym. Degradation Stab 1998;59:117-120 45. Mi FL, Sung HW, Shyu SS. Drug release from chitosanalginate complex beads reinforced by a naturally occurring cross-linking agent. Carbohyd. Res.2002;48:61-72 46. Madihally SV, Matthew HWT. Porous chitisan scaffolds for tissue engineering. Biomaterials 1999;20:1133-1142 47. Ruiz-Herrera J. 1978. The Distribution and quantitative importance of chitin in Fungi. In:Proceedings of the 1st Int. Conf. on chitin/ chitosan. Muzzarelli RAA and Pariser ER ( Eds ):11 48. Jeuniaux C. 1978. Distribution and quantitative importance. In:Proceedings of the 1st Int. Conf. on chitin/chitosan. Muzzarelli RAA and Pariser ER (Eds ):5 49. Bough WA. 1975. Reduction of suspended solids in vegetable canning waste effluents by coagulation with chitosan. J. Food Sci. 40:297. 50. Muzzarelli RAA. 1977. chitin. Pergramon Press, Oxford. 51. Rha C. 1984. Chitosan as a biomaterial. In:Biotechnology in the Marine science. Colwell RR, Sinskey A J, Pariser ER ( Eds ) John Wiley & Sons Press. N. Y.:7 52. Hirano S, Sato N , Yoshida S , Kitagawa S. 1987. Chemical modification of chitin and chitosan, and their novel application. In:Industrial polysaccharides : Genetic engineering, structure/property relation applications. Yalpani M ( Ed ) Elsevier Sci. Publishers:163 53. Grill A. Cold Plasma in Materials Fabrication: From Fundamentals to Applications. IEEE Press 1994;p1-23 54. Vohrer U, Muller M, Oehr C. Glow-discharge treatment for the modification of textiles. Surface and Coating Technology 1998;98: 1128-1131 55. Sprang N, Theirich D, Engemann J. Plasma and ion beam surface treatment of polyethylene. Surface and Coating Technology 1995;74: 689-695 56. Demuth O. Surface treatment of textile polymers by microwave plasma. European Polymer Federation 1987;p14-18 57. Ikada Y, Uyama Y. Lubricating Polymer Surfaces. Technomic Pub 1993;p73-90 58. Chen J, Nho YC, Park JS. Grafting polymerization of acrylic acid onto preirradiated polypropylene fabric. Radiation Physics and Chemistry 1998;52 (1-6): 201-206 59. Hallab NJ, Bundy KJ, O’Connor K, Jacobs JJ. Evaluation of Metallic and Polymeric Biomaterial Surface Energy and Surface Roughness Characteristics for Directed Cell Adhesion. Tissue Eng 2001; 1:55-71 60. van Susante JLC, Bnma P, van Osch GJVM, Versleyen D, van der Kraan PM. Culture of chondrocytes in alginate and collagen carriers gels. Acta Orthop Scand 1995; 66:549-556 61. Buschmann MD, Gluzband YA, Grodzinsky AJ, Hunziker EB. Chondrocytes in agarose culture synthesize a mechanically functional extracellular matrix. J Orthop Res 1992; 10:745-758 62. Barker TH, Grenett HE, MacEwen MW, Tilden SG, Fuller GM, Settleman J. Thy-1 regulates fibroblast focal adhesion, cytoskeletal organization, and migration through modulation of p190 RhoGAP and Rho GTPase activity. Exp Cell Res 2004; 295:488-496 63. Thompson CCM, Clegg PD, Carter SD. Differential regulation of gelatinases by transforming growth factor beta-1 in normal equine chondrocytes. Osteoarthritis Cartilage 2001; 9:325-331 64. Barry F , Boynton RE , Liu BS , Murphy JM . Chondrogenic differentiation of mesenchymal stem cells from bone marrow: differenitiaon-dependent gene expression of matrix compotents. Exp Cell Res 2001; 268:189-200
摘要: 
本論文研究大氣電漿及RGD蛋白質在軟骨組織工程之效用。在實驗設計中,分為不同RGD蛋白質對小豬軟骨細胞之貼附與增生的影響;以及使用大氣電漿和CBD-RGD來改質成豬的第二型膠原蛋白及幾丁聚醣(chitosan)薄膜材料,並利用細胞計數與基因表現,來評估何種改質方法有較佳的效果。在不同RGD蛋白的效用測試中,發現三種RGD蛋白質,皆能促進小豬軟骨細胞貼附,但以在幾丁聚醣薄膜材料上的效果較顯著。在細胞增生方面,經過72小時培養,tri-RGD、387RGDS及CBD-RGD在幾丁聚醣薄膜材料皆可促進小豬軟骨細胞增生。大氣電漿與大氣電漿接枝CBD-RGD的處理方式,皆有良好的促進細胞增生功能,但是觀察細胞的形態發現,在使用大氣電漿預先處理的膠原蛋白樣品上,其細胞都變得較細長,且有去分化的現象,然而,在幾丁聚醣薄膜細胞與控制組差異不大。在基因表現方面,膠原蛋白薄膜經電漿處理的組別,雖然細胞增生較快,但是第二型膠原蛋白基因表現減少,type Ⅱ/ type Ⅰ膠原蛋白的比值亦變小,顯示有去分化的現象。綜合上述,大氣電漿與RGD蛋白在幾丁聚醣薄膜改質有很良好的促進小豬軟骨細胞貼附及增生功能,為組織工程材料表面改質上可行之方法。

The effect of different RGD containing fusion proteins on the attachment and the proliferation of the porcine chondrocytes were studied. In addition, air plasma and CBD-RGD were used to modify the films made of porcine type II collagen or chitosan. The techniques of cell counting and gene expression were used to evaluate the efficacy of the modification. Among different RGD containing fusion proteins, it was found that all three different RGD containing fusion proteins promoted the attachment of porcine chondrocytes. More remarkable effect was observed on the chitosan films. All three different RGD containing fusion proteins also promoted the proliferation of porcine chondrocytes on chitosan films after 72 h. Air plasma and air plasma induced of grafting CBD-RGD both accelerated cell proliferation. On plasma treated collagen, however, cells became elongated and showed signs of de-differentiation. Little difference between cells on chitosan films and plasma treated chitosan was obsered. As to the gene expressions, the collagen films treated by air plasma decreased in type II collagen gene expressing. The ratio of type II/ type I collagen gene expressions was also smaller, indicating de-differentiation. Overall, air plasma and RGD containing fusion proteins showed a positive effect in accelerating the attachment and proliferation of porcine chondrocytes on the chitosan films. This result may be potentially applied to prepare the better tissue engineering scaffolds.
URI: http://hdl.handle.net/11455/23223
其他識別: U0005-2407200609390800
Appears in Collections:生命科學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.