Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/23246
標題: 篩選並鑑定對paclobutrazol具分解能力之土壤微生物
Screening and Identification of Paclobutrazol-Degradating Microbes from the Soils
作者: 李宜珂
Lee, Yi-Ko
關鍵字: paclobutrazol;巴克素
出版社: 生命科學院碩士在職專班
引用: 1. 林金和 1986 幾種新開發的植物生長調節劑 科學發展月刊 14(1): 24-29。 2. 王德男 1988 植物生長調節劑在蓮霧栽培上之應用 鳳山熱帶園藝試驗分所 p.253-263。 3. 王德男 1982 如何生產冬季蓮霧 豐年 32(13): 12-13。 4. 王德男 1983 促進蓮霧提早開花調節產期之研究 II. 化學藥劑及耕作處理對蓮霧催花效果之研究 中華農業研究 32(2): 129-138。 5. 王德男 1984 蓮霧栽培及產期調節技術 農委會及農林廳印 八萬農建大軍訓練教材 p.1-17。 6. Alexander, E., C.Salazar , and T,R,Steck. 1999. The viable but nonculturable condition is induced by copper in Agrobacterium tumefaciens and Rhizobium meliloti. Appl. Environ. Microbiol. 65:3754-3756. 7. Attiya H.J., Field R. J., and Hill G. D. 1983. Effects of PP333 and TIBA growth regulators on development and yield components of spring sown field beans (Vicia Faba L.). Proc Agron Soc New Zealand. 13:81-87. 8. Buchenauer H. 1977. Mode of action of triadimefon in Ustilago avena. Pest and Biochem Physiol. 7:309-20. 9. Commandeur, L.C.M. and Parsons, J.R. 1990. Degradation of halogenated aromatic compounds. Biodegradation. 1: 207-220. 10. Corgan, J. N. and F. B. Widmoyer. 1971. The effects of gibberellic acid on flower hardiness of peach. J. Amer. Soc. Hort. Sci. 96(1): 34-47. 11. Deas A. H. B. and Clifford D.R. 1984. Reductive and oxidative metabolism of triazolylmethanes by two basidiomycete fungi. Pest Biochem and Physiol. 22:276-284. 12. Hampton J. G. 1988. Effect of growth retardant soil residues on succeeding agricultural crops. New Zealand J of Experiment Agr 16:167-172. 13. Hedden P, Graebe JE. 1985. Inhibition of gibberellin biosynthesis by Paclobutrazol in cell-free homogenates of Cucurbita maxiima endosperm and Malus pumila embryos. J of Plant Growth Reg. 13:9-11. 14. Hedden P, and Kamiya Y. 1997. Gibberellin biosynthesis: enzymes, genes and their regulation. Annual Review of Plant Physiology and Plant Molecular Biology. 48: 431-460. 15. Hedden P. 1999. Recent advances in gibberellin biosynthesis. J of Exp Botany. 50: 553-563. 16. Jackson, M. J., M. A. Line, and O. Hasan. 1996. Microbial degradation of a recalcitrant plant growth retardant-Paclobutrazol (PP333). Soil Biol. Biochem. 28:1265-1267. 17. Kaohmu, R. B., R. N. Singh, and E. K. Chacko. 1972. Inhibition of flowering in Mangifera indica L. Ly gibberellic acid Acta. Hort. 24:206-209. 18. Lenton, J.R., Appleford, N.E.J, and Croker, S.J. 1994. Gibberellins and α-amylase gene expression in germinating wheat grains. J of Plant Growth Reg.15: 261-270. 19. M. J. Jackson, M. A. Line, and O. Hasan. 1996 Microbial degradation of a recalcitrant plant growth retardant-paclobutrazol (PP333).Soil Biol. Biochem.28:1265-1267. 20. Tudzynski, B. Hedden, P. Carrera, E. and Gaskin, P. 2001. The P450-4 gene of Gibberella fujikuroi encoded ent-Kaurene oxidase in the Gibberellin biosynthesis pathway. Appl. Environ. Microbiol. 67: 3514-3522. 21. Wang, L. H. and C. H. Lin. 1992. The effect of Paclobutrazol on physiological and biochemical changes in the primary roots of pea. J Experimenta Bot. 43:1367-1372.
摘要: 
Paclobutrazol,又稱PP-333,是人工合成的生長調節劑,已廣泛被使用在調節農作物的產期,例如蓮霧。由於paclobutrazol屬含氯環狀有機化合物,分解不易,在土壤中可維持活性長達數年之久,持續嚴重影響作物之生長;加上農民常超量使用,使得paclobutrazol之污染問題日益嚴重。因此,本實驗希望能由土壤中篩選出可分解paclobutrazol之微生物,進行污染土壤之生物復育。本實驗採集了屏東蓮霧園內不同株齡、不同植株及施用paclobutrazol量的多寡等,不同條件之植株根部的土壤樣本,進行paclobutrazol分解菌之篩選。初步篩到了六株具分解能力之土壤微生物,挑選其中分解效率較高的兩株土壤微生物(4-3及5-3)。利用不同配方之MM培養基,以釐清paclobutrazol對土壤微生物是提供了碳源或是氮源,以及加入誘導物質對分解paclobutrazol之影響,結果發現,paclobutrazol對於土壤微生物4-3之生長較傾向提供所需之碳源,對於土壤微生物5-3之生長則較傾向提供所需之氮源;而誘導物質之加入,並無法使所篩選出之土壤微生物更加特異性地表現所需之酵素;於含有paclobutrazol及glycerol之MM培養基,於30℃培養七天,土壤微生物4-3之培養液paclobutrazol減少50%,而土壤微生物5-3之培養液中paclobutrazol則減少55%;於含有paclobutrazol及(NH4)2SO4之MM培養基,於30℃培養七天,土壤微生物4-3之培養液paclobutrazol減少46%,而土壤微生物5-3之培養液中paclobutrazol則減少38%,顯示,此兩株土壤微生物均具有分解paclobutrazol的能力。利用聚合酶連鎖反應擴增這些土壤微生物之16S rDNA,經DNA定序後,鑑定此兩株土壤微生物均為 Serratia marcescens;進一步將此兩株土壤微生物,委託「財團法人食品工業發展研究所」作菌種之鑑定,結果顯示此兩株土壤微生物均為Serratia marcescens subsp. marcescens。

Paclobutrazol, PP-333, is the artificial growth adjustment which has been extensively used for urging a flower in the wax apple. However, paclobutrazol is a xenobiotic compound and remains in soil for several years and can severely affect the growth and development of subsequent crop. Therefore, the screening method for paclobutrazol - degradating microbes was established to develop an efficient process in the bioremediation of polluted environments. Soils of wax apple garden in Pingtung county were collected. Six microbes with activity of paclobutrazol degradation were isolated ,in which strains 4-3 and 5-3 exhibited high activity. The level of degradation could not be improved by the addition of inducer in the MM medium containing (NH4)2SO4 as nitrogen source.When the cells were incubated in MM medium containing paclobutrazol and glycerol at 30℃ for 7 days about 50-55% of paclobutrazol was degraded by strain 4-3 and strain 5-3 . When the cells were incubated in MM medium containing paclobutrazol and (NH4)2SO4 at 30℃ for 7 days, about 46% of paclobutrazol degraded by strain 4-3 and 38%of paclobutrazol degraded by strain 5-3 was found.These two soil microorganisms was identified to be Serratia marcescens subsp. marcescens.
URI: http://hdl.handle.net/11455/23246
其他識別: U0005-2808200616463900
Appears in Collections:生命科學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.