Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2329
標題: 利用光穿透率及反射率探討低溫多晶矽薄膜之結晶特性
Study on Crystallization of Low Temperature Poly-silicon Thin Films Using Optical Transmittance and Reflectance
作者: 賴大琪
Lai, Ta-Chi
關鍵字: low temperature poly-silicon;低溫多晶矽;amorphous silicon;thin film;transmittance;reflectance;非晶矽;薄膜;穿透率;反射率
出版社: 機械工程學系所
引用: [1] 陳志強,「低溫複晶矽顯示器技術」,全華科技圖書股份有限公司(2004) [2]M.Grasserbauer et al.,“Analysis of Microelectronic Materials and Device”, Wiely Inc. corp.(1991) [3] Andreja Gajovic, Davor Gracin, Igor Djerdj, Nenad Tomas, Krunoslav Juraic, Dang Sheng Su, “ Nanostructure of thin silicon films by combining HRTEM, XRD and Raman spectroscopy measurements and theimplication to the optical properties”, Applied Surface Science Vol.254, (2008) [4] D. Gracin, A. Gajovic, K. Juraic, M. Ceh, Z. Remes, A. Poruba, M. Vanecek, “ Spectral response of amorphous–nano-crystalline silicon thin films”, Journal of Non-Crystalline Solids Vol.354, (2008) [5]F. C. Voogt, R. Ishihara,“Melting and crystallization behavior of low-pressure chemical-vapor-deposition amorphous Si films during excimer-laser annealing”, Journal of Applied Physics Vol.95, No.5, (2004). [6]Y. F. Chong,H.-J. L. Gossmann, M. O. Thompson, S. Yang, K. L. Pey, A. T.S. Wee,“Time-resolved reflectance studies of silicon during laser thermal processing of amorphous silicon gates on ultrathin gate oxides”, Journal of Applied Physics Vol.95, No.11, (2004). [7]J. J. P. Bruines, R. P. M. van Hal, H. M. J. Boots, W. Sinke, F. W. Saris, “Direct observation of resolidification from the surface upon pulsed-laser melting amorphous silicon”, Applied Physics Letters Vol.48, No.19, (1986). [8]Kouichi Murakami,Osamu Eryu, KoKi Takita, Kohzoh Masuda,“Explosive Crystallization Starting from Amorphous-Silicon Surface Region during Long- Pulse Laser Irradiation”, Physics Review Letters Vol.59, No.19, (1987). [9]Mutsuko Hatano, Seungjae Moon, Minghong Lee, Kenkichi Suzuki, Costas P. Grigoropoulos, “Excimer laser-induced temperature field in melting and resolidification of silicon thin films”, Journal of Applied Physics Vol.87, No.11, (2000). [10]James S. Im,H. J. Kim,Michael O. Thompson,“Phase transformation mechanisms involved in excimer laser crystallization of amorphous sillicon films”, Applied Physics Letters Vol.63, 14, (1993). [11]D. H. Auston, C. M. Surko, T. N. C. Venkatesan, R. E. Slusher, J. A. Golovchenko, “Time-resolved reflectivity of ion-implanted silicon during laser annealing”, Applied Physics Letters Vol.33, 5, (1978). [12]J. Siegel, J. Solis, C. N. Afonso, “Recalescence after solidification in Ge films melted by pico-second laser pulses”, Applied Physics Letters Vol .75, No.8, (1999). [13]J. J. P. Bruines, R. P. M. van Hal, H. M. J. Boots, W. Sinke, F. W. Saris, “Direct observation of re-solidification from the surface upon pulsed-laser melting amorphous silicon”, Applied Physics Letters Vol.48, 1252 (1986) [14] 莊達人,“VLSI 製造技術”,高立圖書有限公司(2006) [15] 林文全, “KrF準分子雷射再結晶非晶矽薄膜應用於太陽能電池之研究”,國立成功大學機械工程學系碩士論文,(中華民國九十一年) [16] 陳佳斌, “線上光學檢測技術於準分子雷射退火矽膜之再結晶特性研究”, 國立台灣科技大學機械工程系(中華民國九十四年) [17]Akio Mimura, Youmei Shinagawa, Genshirou Kawachi, Kenichi Onisawa, Tetsurou Minemura, Masayuki Hara, Takeshige Ishida, TomohikoTakeda, “Flat and Large Poly-Si Grains by a Continuous Process of Plasma-Enhanced Chemical Vapor Deposition of a-Si and Its Direct Laser Crystallization”, Japanese Journal of Applied Physics Vol.39, 779-781,(2000) [18]K. Suzuki, M. Takahashi,M. Saitoh, “Influences of hydrogen contents in precursor Si filmto excimer laser crystallization”, Applied Physics Letters Vol.69, (1999). [19]謝尚融,「次波長結構光碟片對光封存效應之研究」, 國立中興大學機械工程系 碩士論文,(中華民國九十七年) [20]http://www.charfac.umn.edu/InstDesc/S4700SEMdesc.html [21] 可見光紫外光分光光譜儀介紹,益弘儀器股份有限公司 [22] http://www.toho-tec.co.jp/ekisho/hando_flat/nano/index.html [23] Eugene Hecht, “OPTICS”, Addison Wesley (2002) [24]丁勝懋,「雷射工程導論」,中央圖書出版社(2000) [25]劉侑宗,「準分子雷射誘發熱滯留輔助結晶技術」,國立台灣科技大學電子工程系 碩士論文,(中華民國九十二年) [26] F. C. Voogt, R. Ishihara,“Melting and crystallization behavior of low-pressure chemical-vapor-deposition amorphous Si films during excimer-laser annealing”, Journal of Applied Physics Vol.95, No.5, (2004).
摘要: 
本論文主要是在探討多晶矽薄膜的結晶特性,利用光的穿透率與反射率來量測不同晶粒尺寸的多晶矽薄膜,用來監控多晶矽薄膜的晶粒尺寸與品質是否符合製作低溫多晶矽薄膜液晶顯示器的範圍。
本研究是使用308nm的氯化氙(XeCl)準分子雷射,以不同的雷射能量強度將非晶矽薄膜退火成為多晶矽薄膜,隨雷射能量的上升,多晶矽的晶粒尺寸也會越來越大,而雷射能量強度與非晶矽薄膜厚度都會使多晶矽晶粒大小與表面粗糙度產生差異,對光的穿透率與反射率亦不相同,本研究便是利用不同的光波長來量測不同照射能量的多晶矽薄膜的穿透率與反射率,搭配掃描式電子顯微鏡(SEM)所量測得到的多晶矽膜晶粒尺寸,以及原子力顯微鏡(AFM)量測的表面粗糙度,找出多晶矽薄膜晶粒尺寸與穿透率及反射率之間的關係,由實驗結果得知當表面粗糙度越高時穿透率值會越低、但反射率值卻會越高,另一方面搭配掃描式電子顯微鏡所量測的晶粒尺寸結果得知,當多晶矽晶粒尺寸介於250nm~450nm時,在波長450nm~500nm的可見光下所測得的平均穿透率會介於30%~35%之間,而平均反射率會在55%~60%之間。

This thesis concerns the crystallization of low temperature poly-silicon films. The sizes of grains in poly-silicon films are determined by optical transmittance and reflectance measurements. These optical measurements allow for the quality control of growing low temperature poly-silicon films for the fabrication of liquid crystal displays.
Amorphous silicon films are annealed to form poly-silicon films under a 308 nm XeCl excimer laser excitation with different laser intensities. The poly-silicon grain size is found to increase by raising the laser excitation intensity. Both the laser intensity and amorphous silicon film thickness affect the grain size and surface roughness of the poly-silicon films, which can be characterized by the wavelength dependence of optical transmittance and reflectance measurements. In addition, the grain size and surface roughness can be characterized by a scanning electron microscope (SEM) and atomic force microscope (AFM), respectively. The grain size and surface roughness determined by the SEM and AFM are then compared with and correlated to the optical transmittance and reflectance measurements. The experimental results show that the transmittance decreases and the reflectance increases while increasing the surface roughness. When the grain size is in the range of 250 nm-450 nm (determined by the SEM), the poly-silicon film on a glass substrate is found to exhibit the transmittance of 30%-35% and the reflectance of 55%-60% on average in the visible light wavelength range of 450 nm-500 nm.
URI: http://hdl.handle.net/11455/2329
其他識別: U0005-2108200901292900
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.