Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributor.authorWu, Cheng-Youen_US
dc.identifier.citation[Arefin et al, 2007] S. Arefin, X. P. Li, M. Rahman and K. Liu, “The upper bound of tool edge radius for nanoscale ductile mode cutting of silicon wafer”, International Journal of Advanced Manufacturing Technology, Vol.31, No.7-8, January 2007, pp.655-662 [Backer et al, 1952] W. R. Backer, E. R. Marshall and M. C. Shaw, “The size effect in metal cutting”, Transactions ASME, Vol.74, 1952, pp.61-72 [Brinksmeier et al, 1995] E. Brinksmeier, W. Preub and O. Riemer, “From friction to chip removal: an experimental investigation of micro cutting process. Part II: Ductile to brittle transition in monocrystalline silicon and germanium”, Proceeding of 8th International Precision Engineering Seminar, 1995, pp.335-338. [Fang and Zhang, 2003] F. Z. Fang and G. X. Zhang, “An experimental study of edge radius effect on cutting single crystal silicon”, International Journal of Advanced Manufacturing Technology, Vol.22, No.9-10, 2003, pp.703-707 [Grzesik and Kwiatkowska, 1997] W. Grzesik and E. Kwiatkowska, “Energy approach to chip-breaking when machining with grooved tool inserts”, International Journal of Machine Tools & Manufacture, Vol.37, No.5, May, 1997, pp.569-577 [Jing et al, 2007] X. Jing, S. Maiti and G. Subhash, “A new analytical model for estimation of scratch-induced damage in brittle solids”, Journal of the American Ceramic Society, Vol.90, No.3, March, 2007, pp.885-892 [Komanduri et al, 1999] R. Komanduri, N. Chandrasekaran and L. M. Raff, “Some aspects of machining with negative-rake tools simulating grinding: A molecular dynamics simulation approach”, Philosophical Magazine B: Physics of Condensed Matter; Statistical Mechanics, Electronic, Optical and Magnetic Properties, Vol.79, No.7, July, 1999, pp.955-968 [Lawn and Wilshaw, 1975] B. Lawn and R. Wilshaw, “Review indentation fracture: principles and applications”, Journal of Materials Science, Vol.10, No.6, June, 1975, pp.1049-1081 [Leung et al, 1998] T. P. Leung, W. B. Lee and X. M. Lu, “Diamond turning of silicon substrates in ductile-regime”, Journal of Materials Processing Technology, Vol.73, No.1-3, January, 1998, pp.42-48 [Liu et al, 2003] X. Liu, X. P. Li and M. Rahman, “Characteristics of high speed micro-cutting of tungsten carbide”, Journal of Materials Processing Technology, Vol.140, No.1-3 SPEC., September, 2003, pp.352-357 [Liu et al, 2004] K. Liu, X. P. Li, M. Rahman and X. D. Liu, “A study of the cutting modes in the grooving of tungsten carbide”, International Journal of Advanced Manufacturing Technology, Vol.24, No.5-6, 2004, pp.321-326 [Liu et al, 2004] K. Liu, X. P. Li, M. Rahman and X. D. Liu, “Study of ductile mode cutting in grooving of tungsten carbide with and without ultrasonic vibration assistance”, International Journal of Advanced Manufacturing Technology, Vol.24, No.5-6, 2004, pp.389-394 [Malkin and Ritter, 1989] S. Malkin and J. E. Ritter, “Grinding mechanisms and strength degradation for ceramics”, Journal of engineering for industry, Vol.111, No.2, May 1989, pp.167-174 [Moneim et al, 1983] M. E. A. Moneim, A. A. Nasser and A. M. A. Mahboud, “A fundamental study of cutting employing orthogonal negative rake tools”, Wear, Vol.85, No.2, March, 1983, pp.171-180 [Nakajima et al, 1989] T. Nakajima, Y. Uno and T. Fujiwara, “Cutting mechanism of fine ceramics with a single point diamond”, Precision Engineering, Vol.11, No.1, 1989, pp.19-25 [Papadopoulos, 1993] G. Papadopoulos, Fracture Mechanics: The Experimental Method of Caustics and the Det.-Criterion of Fracture, Springer-Verlag, 1993 [Shaw, 1984] M. C. Shaw, Metal cutting principle, Oxford science publications, 1984 [Subhash and Klecka, 2007] G. Subhash and M. Klecka, “Ductile to brittle transition depth during single-grit scratching on alumina ceramics”, Journal of the American Ceramic Society, Vol.90, No.11, November, 2007, pp.3704-3707 [Taniguchi, 1994] N. Taniguchi, “The state of the art of nanotechnology for processing of ultraprecision and ultra fine products”, Precision Engineering., Vol.16, 1994, pp.5-24 [Venkatachalam, 2007] S. Venkatachalam, Predictive modeling for ductile machining of brittle materials, In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in the George W. Woodruff School of Mechanical Engineering, December, 2007 [Wang and Liao, 2008] J. J. J. Wang and Y. Y. Liao, “Critical depth of cut and specific cutting energy of a microscribing process for hard and brittle materials”, Journal of Engineering Materials and Technology, Transactions of the ASME, Vol.130, No.1, January, 2008, pp.0110021-0110026 [Yan et al, 2004] J. Yan, J. Tamaki, K. Syoji and T. Kuriyagawa, “Single-point diamond turning of CaF2 for nanometric surface”, International Journal of Advanced Manufacturing Technology, Vol.24, No.9-10, November, 2004, pp.640-646 [廖國忠, 2008] 廖國忠, 氧化鋯陶瓷延性加工之特性研究, 國立中興大學機械工程研究所碩士論文, 2008 [黃勝濤, 1987] 黃勝濤, 非晶態材料的結構和結構分析, 科學出版社, 1987 [泉谷徹郎, 1985] 泉谷徹郎著, 高正雄譯著, 光學玻璃, 復漢出版社, 1985 [莊東漢, 2007] 莊東漢,材料破損分析,五南圖書出版股份有限公司, 2007 [村田, 1995] 村田雅人,構造材料の損傷と破壞,日刊工業新聞社, 1995 [陳宏信, 2006] 陳宏信, 玻璃切割與刻劃製程之研究, 國立中興大學機械工程研究所碩士論文, 2006zh_TW
dc.description.abstract隨著光學等技術的發展,光學玻璃在其應用端如光學透鏡及液晶顯示器等快速發展。由於玻璃具有高硬度與高脆性等特性,加工時容易產生裂紋、缺陷及破壞,導致材料加工之不易控制。以往在加工此種硬脆材料,刀具使用上多以負傾角的方式來提高液靜壓力抑制材料破壞,但並非負傾角愈大其抑制的效果愈好。本研究以白板玻璃B270進行斜刻劃實驗,以五種不同刀具傾斜角度對玻璃刻劃,量測並紀錄切削力分布,分析不同刀具傾角下材料發生破壞時其應力關係。 實驗結果發現到(1)使用刀具傾斜角度0∘之刻劃實驗,其破壞時之刻劃深度約為0.931um,為五種刀具傾斜角度中最深,當刀具傾斜角度逐漸變大,其破裂時之刻劃深度會逐漸變淺。(2)切削力之分布,在刀具傾斜角度為0∘、-5∘及-10∘時,其y方向之切削力皆有合力為零之部分,而當刀具傾斜角度提升至-15∘及-20∘時,y方向合力以無為零之區段,表示說此兩組角度以無延性區域的表現。(3)每組傾角離刻痕始點位置愈近其應力值愈高,而至破壞點時,應力皆有一不穩定的變化,無論是驟升或遽降,此位置與光學顯微鏡觀測之破壞點位置符合。zh_TW
dc.description.abstractAlong with the development of optical engineering, optical glass evolves fast in new application such as optical lens and liquid crystal display. Glass has good characteristic such as high hardness and brittleness, it will cause some defect, crack and fracture due to these characteristics in machining. In the conventions, we use large negative rake angle tool to produce hydrostatics stress pressure to prevent the fracture occurs, but it does not mean the more negative rake angle the more good result. This research is aimed to investigative the fracture stress in taper scribing of B270 glass in five different tool rake angles. Our research shows the following results. (i)The CDOC of taper scribing experiment using -73.9∘rake angle tool is 0.931um, it’s the most deeper cutting depth of the five kinds of rake angles, as the large negative rake angle, the fracture depth of cut became shallow.(ii)In the distribution of cutting force, the Fy equal to zero when we using 0∘、-5∘and -10∘ cutting tool incline angles but not in -15∘and -20∘cutting tool incline angles. It present the ductile region if the Fy equal to zero in this experiment.(iii)Each parameter has the same result that exists an peak value when the material fracture and accord with the optical microscope observes.zh_TW
dc.description.tableofcontents致謝 i 摘要 ii Abstract iii 目錄 iv 圖目錄 vi 表目錄 ix 符號表 x 第一章 研究背景與目標 1 1-1 研究背景 1 1-2 研究動機與目標 1 1-3 研究方法與步驟 2 1-4 文獻回顧 2 1-5 本文架構 12 第二章 理論分析 13 2-1 應力場分布 13 2-2 抗拉強度分析 16 2-3 破壞理論 19 第三章 實驗規劃 23 3-1實驗流程 23 3-2 斜刻劃實驗 23 3-3 實驗設備 24 第四章 實驗結果與討論 36 4-1 斜刻劃實驗結果 36 4.2 應力分析 51 第五章 結論與未來展望 60 5-1 結論 60 5-2 未來展望 61 參考文獻 62zh_TW
dc.subjecttaper scribingen_US
dc.subjectfracture stressen_US
dc.titleThe Investigation on the Fracture Stress of Machining B270 Glassen_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.fulltextno fulltext-
Appears in Collections:機械工程學系所
Show simple item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.