Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2339
標題: 最低加工成本之組裝公差配置-以工具機主軸為例
Tolerance Allocation with Minimun Machining Cost - A Case Study for the Spindle of A Machine tool
作者: 黃政德
Huang, Jeng-De
關鍵字: Tolerance Analysis;公差分析;Tolerance Allocation;公差配置
出版社: 機械工程學系所
引用: [Wilson, 1963] R. B. Wilson, “A simplicial method for convex programming,” Ph. D. Dissertation, Harvard University, 1963. [Wade, 1967] O. R. Wade, “Tolerance Control in Design and Manufacturing,” Industrial Press, New York, 1967. [Broydon, 1970] C.G. Broydon, “The Convergence of a Class of Double Rank Minimization Algorithms, part I and II,” J. Inst. Maths. Applics., Vol.6, 1970, pp.76-90. [Fletcher & Powell, 1970] R. Fletcher and M. J. D. Powell, “A Rapidly Convergent Method for Minimization,” Computer Journal, Vol.6, No. 2, 1970, pp. 163-168. [Goldfarb, 1970] D. Goldfarb, “A Family of Variable Metric Methods Derived by Variational Means,” Mathenatics of Computing, Vol.24, 1970, pp.23-36. [Shanno, 1970] D. F. Shanno,“Conditioning of Quasi-Newton Methods for Function Minimization.” Mathematics of Computing, Vol.24, 1970, pp.647-656. [Han, 1976] S. P. Han, “Superlinearly convergent variable metric algorithms for general nonlinear programming problems,” Mathematical Programming, Vol.11, 1976, pp.263-282. [Han, 1977] S. P. Han, “A Globally Convergent Method for Nonlinear Programming,” Journal of Optimization Theory and Applications, Vol.22, No.3, July, 1977, pp.297-309. [Powell, 1978] M. J. D. Powell, “A fast algorithm for nonlinearly constrained optimization calculations.,”Numerical Analysis, G. A. Watson ed., Lecture Notes in Mathematics, Springer-Verlag, Vol. 630, 1978, pp.144-175. [Requicha, 1983] A. A. Requicha, “Toward A Theory of Geometric Tolerancing,” International Journal of Robotics Research, Vol.2, No.4, 1983, pp.45-60. [Craig, 1986] J. J. Craig, Introduction to Robotices: Mechanics and Control, Addison-Wesley, 1986. [Fleming, 1988] A. Fleming, “Geometric Relationships between Toleranced Features,” Artificial Intelligence, Vol.37, No.1-3, 1988, pp.403-412. [Bernstein & Preiss, 1989] N. S. Bernstein and K. Preiss, “Representation of Tolerance Information in Solid Models,” Proceedings of 1989 ASME Design Technical Conference, Advances in Design Automation, Vol. I, DE-v19-1, pp.37-48. [Chase & Parksion, 1991] K. W. Chase and A. R. Parkinson, “A Survey of Research in the Applicatuon of Tolerance Analysis to the Design of Mechanical Assemblies,” Research in Engineering Design, Vol.3, No.1, March, 1991, pp.23-27. [BjØrke, 1989] O. BjØrke, Computer-Aided Tolerancing, 2nd ed. ASME Press, 1989. [He, 1991] J. R. He,“Tolerancing for Manufacturing via Cost Minimization,” International Journal of Machine Tools Manufacturer, Vol.31, No.4, 1991, pp.455-470. [Tsai, 1993] J.-C. Tsai,“Tolerance Reasoning for Concurrent CAD/CAM Systems,” Ph. D. Dissertation, Stanford University, 1993. [ASME, 1994] ASME Y14.5M , Mathmatical Definition of Dimensionong and Tolerancing Principles, 1994. [Lin et al., 1995] C.-Y. Lin, W.-H. Huang, M.-C. Jeng and J.-L. Doong, “Study of an assembly tolerance allocation model based on Monte Carlo simulation,” Journal of Materials Processing Technology, Vol. 70, No. 1-3, October, 1997, pp.9-16. [Ngoi et al., 1996] B. Ngoi, K. Ann, M. Seow, and M. Seng, “Tolerance Synthesis Adopting a Nonlinear Programming Approach,” International Journal of Advanced Manufacturing Technology, Vol.11, No.6, 1996, pp.387-393. [Desrochers & Riviere, 1997] A. Desrochers and A. Riviere, “A Matrix Approach to the Representation of Tolerance Zones and Clerances,” International Journal of Advanced Manufacturing Technology, Vol.13, No.9, 1997, pp.630-636. [Ramani et al., 1998] B. Ramani, S. H. Cherachi and J. M. Twomey, “CAD-Based integrated tolerancing system,” International Journal of Production Research , Vol.36, No.10,October, 1998, pp.2891-2910. [Ngoi et al., 1999] B. K. A. Ngoi, L. E. N. Lim , P. S. Ang and A. S. Ong, “Assembly Tolerance Stack Analysis for Geometric Characteristics in Form Control – the “Catena"Method,” International Journal of Advanced Manufacturing Technology, Vol.15, No.4, 1999, pp.292-298. [The Math works Inc., 2001] The Math works Inc., “Optimiziation Toolbox For Use With Matlab,”, The Math works Inc. ,June, 2001. [Ji & Xue, 2002] P. Ji and J. B. Xue, “Process Tolerance Control in a 2D Angular Tolerance chart,”, International Journal of Advanced Manufacturing Technology, Vol.20, No.9, 2002, pp.649-654. [Yeh & Chang, 2003] C.-C. Yeh and P.-L. Chang, “The Taiwan system of innovation in the tool machine industry: A case study,” Journal of Engineering and Technology Management - JET-M, Vol.20, No.4, December, 2003, pp.367-380. [Prabhaharan et al., 2004] G. Prabhaharan, P. Asokan and S. Rajendran, “Genetic-algorithm-base optimal tolerance allocation using a least-cost model,” International Journal of Advanced Manufacturing Technology, Vol.24, No.9-10, November, 2004, pp.647-660. [Hu & Xiong, 2004] J. Hu, G. Xiong and Z.Wu, “A variational geometric constraints network for a tolerance type specification,” International Journal of Advanced Manufacturing Technology, Vol. 24, No.3-4, 2004, pp.214-222. [Hu & Xiong, 2005] J. Hu and G. Xiong, “Dimensional and geometric tolerance design based on constraints,” International Journal of Advanced Manufacturing Technology, Vol.26, No.9-10, October, 2005, pp.1099-1108. [Haq et al., 2006] A. N. Haq, K. Sivakumar and K. Karthikeyan, “Particle swarm optimization (PSO) algorithm for optimal machining allocation of clutch assembly,” International Journal of Advanced Manufacturing Technology, Vol.27, No.9-10, February, 2006, pp.865-869. [Kumaravel et al., 2007] P. Kumaravel, S. Anand and P. V. Mohanram, “Cost optimization of process tolerance allocation-a tree based approach,” International Journal of Advanced Manufacturing Technology, Vol.34, No.7-8, October, 2007, pp.703-713. [Kumar et al, 2008] M. S. Kumar, S. M. Kannan and V. Jayabalan, “A new algorithm for optimum tolerance allocation of complex assemblies with alternative process selection,” The International Journal of Advanced Manufacturing Technology, Vol.45, No.20, January, 2007, pp.4793-4822. [ISO 286-2, 1988] ISO 286-2, limits and fits - Part 2: Tables of standard tolerance grades and limit deviations for holes and shafts,1988. [CNS4-1,1987] CNS4-1, 限界與配合(公差與偏差制度),經濟部中央標準局,1987。 [CNS4027,1987] CNS4027, 尺度之ㄧ般許可差通則,經濟部中央標準局,1987。 [鄭國德,1994] 鄭國德,區間與統計資料運算方法之發展及其在產品誤差分析之應用,國立中興大學機械工程研究所碩士論文,1994。 [徐業良,1995] 徐業良,工程最佳化設計,國立編譯館主編,1995。 [侯靖男,1995] 侯靖男,公差分析與公差敏感度分析在產品設計之應用,國立中興大學機械工程研究所碩士論文,1995。 [石進名,1996] 石進名,車削加工線性公差分析與製程合理化研究,國立中興大學機械工程研究所碩士論文,1996。 [張自南,1997] 張自南,數值最適化方法,全華科技圖書股份有限公司,1997。 [王文瑋,1998] 王文瑋,CAD環境下電腦輔助公差設計與分析系統,國立中興大學機械工程研究所碩士論文,1998。 [王曉慧,2002] 王曉慧,關於虛公差問題的研究,製造技術與機床,2002。 [鄭與蔡,2003] 鄭國銘與蔡志成,應用Lagrange Multipliers進行最佳化公差配置,中國機械工程工程師學會第二十屆學術研討會論文集(固力與設計),2003。 [沈哲民,2005] 沈哲民,機件公差配合與尺寸鏈分析實務-公差標註範例解説,財團法人工業技術研究院,人才培訓計畫講義,2005。 [鄭蕉杏,2005] 鄭蕉杏,公差分析之研究,大葉大學機械工程研究所碩士論文,2005。 [NTN, 2006] NTN株式會社,“精密転がり軸受”,產品技術情報, CAT. No. 2260- /J, 2006。 [王英權,2007] 王英權,產品零組件公差分配之最佳化設計-利用粒子群演算法,大葉大學工業工程與科技管理學系碩士論文,2007。 [朱益伸, 2007] 朱益伸,工具機主軸公差分析與調整方法探討,中興大學機械工程研究所碩士論文,2007。 [洪維恩,2007] 洪維恩,Matlab7程式設計,旗標出版社,2007。 [陳家樂,2008] 陳家樂,台灣工具機出口市場分析,工具機與零組件雜誌,2008年九月。 [張志方,2008] 張志方,結合CAD之產品公差資訊系統開發與應用,中興大學機械工程研究所碩士論文,2008。
摘要: 
「工具機」為可以製作各類產品之加工設備,又稱為「工作母機」。隨著加工性能不斷提升,加工精度要求也就愈高,主軸又為工具機最關鍵之零組件,其公差設計技術往往是一個Know How。開發端往往依據本身多年經驗或是參考他人設計經驗來決定改善決策,並無一套明確之方法。
本研究目標在於如何針對原始設計公差進行配置,以達到降低成本為目標,其方法即是先針對工具機主軸圖面上之資訊進行公差分析,尋找二條關鍵路徑為例,求出其組裝誤差堆疊,分析之方法包括建構主軸系統之產品架構、建構主軸系統之公差網路以及分析主軸系統公差網路中組裝所對應路徑之公差累積造成之精度變異。公差配置則是根據精度變異範圍進一步分析其成本,透過使用序列二次規劃最佳化方法,以最小製程成本為目標,建立主軸組裝誤差堆疊限制條件與個別公差限制條件作公差配置。其中個別公差限制條件透過標準作業程序方式設定,將經驗值建立為一量化標準提供參考,以作為設計依據。
在公差配置方法上主要依據公差調整策略,其方法為:(A) 維持原有精度要求,以使製程成本降低;(B)提高精度要求,製程成本增加最少;以及(C)放寬精度要求,製程成本降低最多。研究發現針對三種不同的公差調整策略,路徑一經過公差配置後,其結果顯示該主軸精度變異量維持不變下,成本則減少了5.6%;若提高其變異量20%與30%,則成本則提高4.7%與6.4%;若放寬其精度至11%,則成本下降6.4%。而路徑二公差配置後主軸精度變異量維持不變下,成本則減少了5.1%;若提高其變異量26%與42%,則成本則提高16.6%與32.5%;若放寬其精度至5.3%,則成本下降8%。可以發現原始設計經由公差調整策略與公差配置法,可以提供主軸組裝公差配置之依據。

Machine tool can procedure each kind products of processing equipments, thus is called “mother of machinery”. Promotes unceasingly along with the machining performance, the machining accuracy request is also higher. Spindle is the critical component. The relate tolerance design technique of a spindle usually is a question. Designer often depended on many years' experiences by oneself or referred to others' design methods to make the improvement strategies. They did not have exactly methods to follow.
The purpose of this study is according to specification of original tolerance to allocate it for reduces the product processing cost as the goal. The research method was aimed to engineering graphics of the spindle system applied the tolerance analysis. For example, searched two critical dominant path and calculated the tolerance stack-up in the assembly. These methods include the establishment of product hierarchy via product and feature decompositions, the establishment of tolerance network of the mandrel system, and variation analysis based on the path of the tolerance network. Tolerance allocation is according to the precision variation requirement and product processing cost. The method used for sequential quadratic programming (SQP) algorithm. In the optimum model, the objective is to minimize the summation of product processing cost and then to construct the tolerance stack-up constraint conditions and the self-tolerance boundary constraint conditions. The self-tolerance boundary constraint conditions by using standard operating procedure (SOP) method to set it as a reference of tolerance allocation.
The tolerance allocation method is according to tolerance adjusting strategy. It includes the following 3 methods: (A) Keeping the same precision variation but reducing production cost. (B) Increasing the precision variation with maximum reduction of production. (C) Decreasing the precision variation while keeping low production cost. The result of tolerance allocation on the mandrel system shows that the cost of route 1 reduces 5.6% as the accuracy and variation of spindle are not changed. If increasing 20% and 30% of variations, the costs 4.7% and 6.4% increasing. If loosing 11% of accuracy, the cost 6.4% decreasing. For route 2, the accuracy of spindle maintains the same, the cost 5.1% decreasing. If increasing 26% and 42% of variations, the costs 16.6% and 32.5% increasing. If loosing 5.3% of accuracy, the cost 8% decreasing. We know that the original design through tolerance adjustment and allocation can be the basis for tolerance allocation of spindle assembly.
URI: http://hdl.handle.net/11455/2339
其他識別: U0005-2108200914300000
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.