Please use this identifier to cite or link to this item:
標題: 精微定位平台之設計與分析
Design and Analysis of Micro Precision Positioning Stage
作者: 尹國嬌
Yin, Guo-Jiao
關鍵字: positioning stage;定位平台;flexural structure;finite element method;撓性結構;有限元素
出版社: 機械工程學系所
引用: 參考資料 [1] M. Patrascu, and S. Stramigioli, “Stick-slip actuation of electrostatic stepper micropositioners for data storage-the μwalker,” Proceeding of the 2005 International Conference on MEMS, NANO and Smart Systems 24-27, July 2005, pp.81-86. [2] P. E. Tenzer, and R. B. Mrad, “A systematic procedure for the design of piezoelectric inchworm precision positioners,” IEEE/ASME Transactions on Mechatronics, Volume 9, No. 2, June 2004, pp.427- 435. [3] Z. Gong, H. L. Ho, G. Yang, and W. Lin, “Experimental-model-based precision control of a piezoelectric actuated flexure stage,” Proceeding of the International Conference on Automation Science and Engineering 1-2, August 2005, pp.124-129. [4] 李玉山,「蚇蠖蟲式定位平台的最佳化設計與分析」,碩士論文,中興大學機械學系研究所,中華民國九十四年七月。 [5] 馮榮豐,何正宇,胡勝淳,2004,平面式三自由度微奈米定位平台,專利公告號M252495 (新型-中華民國)。 [6] 吳宗龍,「具位移放大機構的壓電致動微定位平台之設計與分析」,碩士論文,國立中正大學機械工程學系研究所,民國九十三年。 [7] 謝士渠,「壓電致動器運用在XYθz精密定位平台之設計與實驗」,碩士論文,彰化師大學工業教育學系,民國八十九年。 [8] W. Y. Jywe, Y. R. Jeng, C. H. Liu, Y. F. Teng, C. H. Wu, H. S. Wang and Y. J. Chen, “A novel 5DOF thin coplanar nanometer-scale stage”, Precision Engineering, Volume 32, No. 4, October 2008, pp.239-250. [9] 王福壽,「六自由度混合式定位平台之設計分析與製造」,博士論文,國立成功大學製造工程研究所,民國九十七年一月。 [10] R. F. Fung and W. C. Lin, “System identification of a novel 6-DOF precision positioning table”, Sensors and Actuators, A: Physical, Volume 150, No. 2, March 2009, pp.286-295. [11] R. F. Fung, C. T. Fan and W. C. Lin, “Design and analysis of a novel six-degrees-of-freedom precision positioning table”, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Volume 223, No. 5, May 2009, pp.1203-1212. [12] 李一民,「六自由度微定位平台之設計與分析」,碩士論文,中興大學機械學系研究所,中華民國九十五年六月。 [13] 張善岳,「六軸微定位平台之設計與分析」,碩士論文,中興大學機械學系研究所,中華民國九十七年七月。 [14] I. Hostens, J. Anthonis and H. Ramon, “New design for a 6 dof vibration simulator with improved reliability and performance”, Mechanical Systems and Signal Processing, Volume 19, No.1, January 2005, pp.105-122. [15] Y. Ting, H. C. Jar and C. C. Li, “Measurement and calibration for Stewart micromanipulation system”, Precision Engineering, Volume 31, No.3, July 2007, pp.226-233. [16] A. Preumont, M. Horodincaa, I. Romanescua, B. d. Marneffea, M. Avraama, A. Deraemaekera, F. Bossensb and A. A. Hanieh, “A six-axis single-stage active vibration isolator based on Stewart platform”, Journal of Sound and Vibration, Volume 300, No.3-5, March 2007, pp.644-661. [17] H. Wang and X. Zhang, “Input coupling analysis and optimal design of a 3-DOF compliant micro-positioning stage”, Mechanism and Machine Theory, Volume 43, No. 4, April 2008, pp.400-410. [18] Y. K. Yong, T. F. Lu and D. C. Handley, “Review of circular flexure hinge design equations and derivation of empirical formulations”, Precision Engineering, Volume 32, No. 2, April 2008, pp.63-70. [19] Y. K. Yong and T. F. Lu, “The effect of the accuracies of flexure hinge equations on the output compliances of planar micro-motion stages”, Mechanism and Machine Theory, Volume 43, No. 3, March 2008, pp.347-363. [20] Y. K. Yong and T. F. Lu, “Kinetostatic modeling of 3-RRR compliant micro-motion stages with flexure hinges”, Mechanisms and Machine Theory, Volume 44, No. 6, June 2009, pp.1156-1157. [21] 楊家昇,「精密進給系統驅動機構之設計研究」,碩士論文,中興大學機械研究所,中華民國九十三年七月。 [22] B. H. Kang, J. T. Y. Wen, N. G. Dagalakis, and J. J. Gorman, “Analysis and design of parallel mechanisms with flexure joints,” IEEE Transactions on Robotics, Volume 21, No. 6, December 2005, pp.1179-1185. [23] J.M. Paros,and L.Weisbord, “How to design flexure hinge”, Machine Design, Volume 37, November 1965. [24] Physik Instrumente, Micropositioning, Nano Positioning, Nano-Automation, 2001. [25] N. Lobontiu, “Chapter:2 Compliant Mechanisms: Design of Flexure Hinges”, CRC Press, 2003. [26] J. M. Gere, “Mechanics of Materials”, Brook/Cole, California, 2001, pp.899. [27] Physik Instrumente, “Nano Positioning User Manual”, 2001-2004. [28] IOtech, “DaqBoard/2000 and /2000c Series User Manual”, April 2002.
本論文的研究步驟主要可分為四個階段,(1)定位平台設計概念、(2)定位平台理論分析、(3)定位平台有限元素分析、(4)定位平台實驗。在設計分析流程中,首先根據平台的設計概念,再針對定位平台的撓性結構之構型分析其靜態與動態特性,最後將理論分析與ANSYS有限元素分析、自然頻率響應實驗的結果三者比較,藉此以驗證整個理論分析流程的正確性並設計出在X方向之最大位移為11.25 μm、Y方向之最大位移為13.15 μm、Z方向之最大位移為13.59 μm、θ之最大旋轉量為327.82 μrad、ψ之最大旋轉量為323.67 μrad、φ之最大旋轉量為315.88 μrad之定位平台。


The purpose of this research is to design a six degree-of-freedom micro precision positioning stage. By using flexure hinge and piezoelectric actuator, this stage can achieve precision positioning with nanometer resolution. We designed a positioning stage in monolithic mechanism with six degree-of-freedom.
In this thesis, the functional requirements were discussed firstly. A conceptual design was followed according to these functional requirements. Then a mathematical model of the stage was constructed. Finite element analysis with experiment was conducted to verify the design. The experiment results show that the stage can achieve a maximum displacement 11.25 μm in X axis; 13.15 μm in Y axis; and 13.59 μm in Z axis. The stage can also achieve a maximum rotation 327.82 μrad around X axis; 323.67 μrad around Y axis; and 315.88 μrad around Z axis.

Key Words: positioning stage, flexural structure, finite element method
其他識別: U0005-2201201009404900
Appears in Collections:機械工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.